{-# language DataKinds #-} {-# language ExplicitForAll #-} {-# language KindSignatures #-} {-# language TypeFamilies #-} {-# language TypeOperators #-} module Arithmetic.Lt ( -- * Special Inequalities zero -- * Substitution , substituteL , substituteR -- * Increment , incrementL , incrementR -- * Weaken , weakenL , weakenR -- * Composition , plus , transitive , transitiveNonstrictL , transitiveNonstrictR -- * Convert to Inequality , toLteL , toLteR -- * Absurdities , absurd -- * Integration with GHC solver , constant ) where import Arithmetic.Unsafe (type (<)(Lt),type (:=:)(Eq)) import Arithmetic.Unsafe (type (<=)(Lte)) import GHC.TypeNats (CmpNat,type (+)) import qualified GHC.TypeNats as GHC toLteR :: (a < b) -> (a + 1 <= b) toLteR Lt = Lte toLteL :: (a < b) -> (1 + a <= b) toLteL Lt = Lte -- | Replace the left-hand side of a strict inequality -- with an equal number. substituteL :: (b :=: c) -> (b < a) -> (c < a) substituteL Eq Lt = Lt -- | Replace the right-hand side of a strict inequality -- with an equal number. substituteR :: (b :=: c) -> (a < b) -> (a < c) substituteR Eq Lt = Lt -- | Add a strict inequality to a nonstrict inequality. plus :: (a < b) -> (c <= d) -> (a + c < b + d) plus Lt Lte = Lt -- | Add a constant to the left-hand side of both sides of -- the strict inequality. incrementL :: forall (c :: GHC.Nat) (a :: GHC.Nat) (b :: GHC.Nat). (a < b) -> (c + a < c + b) incrementL Lt = Lt -- | Add a constant to the right-hand side of both sides of -- the strict inequality. incrementR :: forall (c :: GHC.Nat) (a :: GHC.Nat) (b :: GHC.Nat). (a < b) -> (a + c < b + c) incrementR Lt = Lt -- | Add a constant to the left-hand side of the right-hand side of -- the strict inequality. weakenL :: forall (c :: GHC.Nat) (a :: GHC.Nat) (b :: GHC.Nat). (a < b) -> (a < c + b) weakenL Lt = Lt -- | Add a constant to the right-hand side of the right-hand side of -- the strict inequality. weakenR :: forall (c :: GHC.Nat) (a :: GHC.Nat) (b :: GHC.Nat). (a < b) -> (a < b + c) weakenR Lt = Lt -- | Compose two strict inequalities using transitivity. transitive :: (a < b) -> (b < c) -> (a < c) transitive Lt Lt = Lt -- | Compose a strict inequality (the first argument) with a nonstrict -- inequality (the second argument). transitiveNonstrictR :: (a < b) -> (b <= c) -> (a < c) transitiveNonstrictR Lt Lte = Lt transitiveNonstrictL :: (a <= b) -> (b < c) -> (a < c) transitiveNonstrictL Lte Lt = Lt -- | Zero is less than one. zero :: 0 < 1 zero = Lt -- | Nothing is less than zero. absurd :: n < 0 -> void absurd Lt = error "Arithmetic.Nat.absurd: n < 0" -- | Use GHC's built-in type-level arithmetic to prove -- that one number is less than another. The type-checker -- only reduces 'CmpNat' if both arguments are constants. constant :: forall a b. (CmpNat a b ~ 'LT) => (a < b) constant = Lt