-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | A typeclass and set of functions for working with newtypes. -- -- Per Conor McBride, the Newtype typeclass represents the packing -- and unpacking of a newtype, and allows you to operate under -- that newtype with functions such as ala. See -- Control.Newtype for documentation and examples. @package newtype @version 0.2.2.0 -- | The Newtype typeclass and related functions: op, -- ala, ala', under. Primarly pulled from Conor -- McBride's Epigram work. Some examples: -- --
--   >>> ala Sum foldMap [1,2,3,4] -- foldMaps the list ala the Sum newtype
--   10
--   
-- --
--   >>> ala Product foldMap [1,2,3,4] -- foldMaps the list ala the Product newtype
--   24
--   
-- --
--   >>> ala Endo foldMap [(+1), (+2), (subtract 1), (*2)] 3 -- foldMaps the list ala the Endo newtype
--   8
--   
-- -- NB: foldMap is a generalized mconcatMap which is a -- generalized concatMap. -- -- This package includes Newtype instances for all the -- (non-GHC/foreign) newtypes in base (as seen in the examples). However, -- there are neat things you can do with this with any -- newtype and you should definitely define your own -- Newtype instances for the power of this library. For example, -- see "ala Cont traverse", with the proper -- Newtype instance for Cont. module Control.Newtype -- | Given a newtype n, we will always have the same -- unwrapped type o, meaning we can represent this with a fundep -- n -> o. -- -- Any instance of this class just needs to let pack equal to the -- newtype's constructor, and let unpack destruct the -- newtype with pattern matching. -- -- Starting with newtype-0.2.2.0, default method implementations -- are provided using Data.Coerce for GHC 7.8 (i.e. -- base-4.7.0.0) and later, i.e.: -- --
--   pack   = coerce
--   unpack = coerce
--   
-- -- When omitting the method definitions with GHC 7.4 and 7.6 a compile -- error will be triggered. -- -- Consequently, if your code relies on these default methods make sure -- to state -- --
--   build-depends: newtype ^>= 0.2.2.0
--   
-- -- In your .cabal package description. class Newtype n o | n -> o pack :: Newtype n o => o -> n unpack :: Newtype n o => n -> o pack :: (Newtype n o, Coercible o n) => o -> n unpack :: (Newtype n o, Coercible n o) => n -> o -- | This function serves two purposes: -- --
    --
  1. Giving you the unpack of a newtype without you needing to -- remember the name.
  2. --
  3. Showing that the first parameter is completely ignored on -- the value level, meaning the only reason you pass in the constructor -- is to provide type information. Typeclasses sure are neat.
  4. --
op :: Newtype n o => (o -> n) -> n -> o -- | The workhorse of the package. Given a pack and a "higher order -- function", it handles the packing and unpacking, and just sends you -- back a regular old function, with the type varying based on the -- hof (higher-order function) you passed. -- -- The reason for the signature of the hof is due to ala not -- caring about structure. To illustrate why this is important, another -- function in this package is under. It is not extremely useful; -- under2 might be more useful (with e.g., mappend), but -- then we already digging the trench of "What about under3? -- under4?". The solution utilized here is to just hand off the -- "packer" to the hof. That way your structure can be imposed in the -- hof, whatever you may want it to be (e.g., List, Traversable). ala :: (Newtype n o, Newtype n' o') => (o -> n) -> ((o -> n) -> b -> n') -> b -> o' -- | This is the original function seen in Conor McBride's work. The way it -- differs from the ala function in this package, is that it -- provides an extra hook into the "packer" passed to the hof. However, -- this normally ends up being id, so ala wraps this -- function and passes id as the final parameter by default. If -- you want the convenience of being able to hook right into the hof, you -- may use this function. ala' :: (Newtype n o, Newtype n' o') => (o -> n) -> ((a -> n) -> b -> n') -> (a -> o) -> b -> o' -- | A very simple operation involving running the function "under" the -- newtype. Suffers from the problems mentioned in the ala -- function's documentation. under :: (Newtype n o, Newtype n' o') => (o -> n) -> (n -> n') -> o -> o' -- | The opposite of under. I.e., take a function which works on the -- underlying types, and switch it to a function that works on the -- newtypes. over :: (Newtype n o, Newtype n' o') => (o -> n) -> (o -> o') -> n -> n' -- | under lifted into a Functor. underF :: (Newtype n o, Newtype n' o', Functor f) => (o -> n) -> (f n -> f n') -> f o -> f o' -- | over lifted into a Functor. overF :: (Newtype n o, Newtype n' o', Functor f) => (o -> n) -> (f o -> f o') -> f n -> f n' instance Control.Newtype.Newtype Data.Semigroup.Internal.All GHC.Types.Bool instance Control.Newtype.Newtype Data.Semigroup.Internal.Any GHC.Types.Bool instance Control.Newtype.Newtype (Data.Semigroup.Internal.Sum a) a instance Control.Newtype.Newtype (Data.Semigroup.Internal.Product a) a instance Control.Newtype.Newtype (Control.Arrow.Kleisli m a b) (a -> m b) instance Control.Newtype.Newtype (Control.Applicative.WrappedMonad m a) (m a) instance Control.Newtype.Newtype (Control.Applicative.WrappedArrow a b c) (a b c) instance Control.Newtype.Newtype (Control.Applicative.ZipList a) [a] instance Control.Newtype.Newtype (Data.Functor.Const.Const a x) a instance Control.Newtype.Newtype (Data.Semigroup.Internal.Endo a) (a -> a) instance Control.Newtype.Newtype (Data.Monoid.First a) (GHC.Maybe.Maybe a) instance Control.Newtype.Newtype (Data.Monoid.Last a) (GHC.Maybe.Maybe a) instance Control.Arrow.ArrowApply a => Control.Newtype.Newtype (Control.Arrow.ArrowMonad a b) (a () b) instance Control.Newtype.Newtype (Data.Fixed.Fixed a) GHC.Integer.Type.Integer instance Control.Newtype.Newtype (Data.Semigroup.Internal.Dual a) a instance Control.Newtype.Newtype (Data.Semigroup.Internal.Alt f a) (f a) instance Control.Newtype.Newtype (Data.Ord.Down a) a instance Control.Newtype.Newtype (Data.Functor.Identity.Identity a) a instance Control.Newtype.Newtype (Data.Functor.Compose.Compose f g a) (f (g a)) instance Control.Newtype.Newtype (Data.Monoid.Ap f a) (f a)