90       Safe-InferredClass of vector spaces v with scalar s.  !"# !"# !"# Safe-InferredThe infinite natural number. $%&'()*+,- %$&'()*+,- Safe-Inferred ./0123./0123  Safe-Inferred456789:;<=>?@ABCDEFGHIJK456789:;<=>?@ABCDEFGHIJK456789:;<=>?@ABCDEFGHIJKNoneL500 decimals.  50 decimals. Ten decimals. AA type construct that gives one more decimals than the argument. $An epsilon of 1, i.e., no decimals. The  < class contains the types that can be used to determine the  precision of a  number. 5Convert between two arbitrary fixed precision types. ML N OP QRSTUVWXYZ[\]^_      ML N OP QRSTUVWXYZ[\]^_NoneDFloating point number where the precision is determined by the type e. `abcdefghijk   `abcdefghijk Safe-InferredThe . type implements (constructive) real numbers. 'Note that the comparison operations on  may diverge < since it is (by necessity) impossible to implementent them # correctly and always terminating. *This implementation is really David Lester's ERA package. The  function connverts a  to a l. "mnopqrstuvwxyz{|The number of decimals The real number The resulting string }~!mnopqrstuvwxyz{|}~ Safe-InferredThe - type is the type of differentiable numbers.  It'0s an instance of all the usual numeric classes. 5 The computed derivative of a function is is correct = except where the function is discontinuous, at these points 3 the derivative should be a Dirac pulse, but it isn't. The + numbers are printed with a trailing ~~ to  indicate that there is a "tail" of derivatives. The ' function turns a normal number into a  8 number with the same value. Not that numeric literals 6 do not need an explicit conversion due to the normal " Haskell overloading of literals. The ) function turns a number into a variable 8 number. This is the number with with respect to which  the derivaticve is computed. The  takes a  number and returns its first 5 derivative. The function can be iterated to to get  higher derivaties. The  function takes a  number back to a normal 4 number, thus forgetting about all the derivatives. The  takes a value and  value and makes  a / number that has the given value as its normal  value, and the  number as its derivatives. The * function is a simple utility to take the - derivative of a (single argument) function.  It is simply defined as  deriv f = val . df . f . dVar  Convert a # function to an ordinary function.  Safe-Inferred7Symbolic numbers over some base type for the literals. Create a variable. 5Create a constant (useful when it is not a literal). The expression  subst x v e substitutes the expression v for each  occurence of the variable x in e.      !"#$%&'()*+,-./0123456789:;<= > ? @ A B C D E F G H I J K L M N O P Q R S T UVWXY?Z[\]^_`abcdefghijklmnopqrstjuvwxyz{|}~numbers-3000.1.0.1Data.Number.NaturalData.Number.IntervalData.Number.FixedData.Number.BigFloatData.Number.CRealData.Number.DifData.Number.SymbolicData.Number.VectorspaceData.Number.FixedFunctionsNaturalinfinityIntervalivalgetIvalFixed PrecPlus20Prec50Prec10EpsDiv10Eps1Epsilon precision convertFixed dynamicEpsBigFloatCReal showCRealDifdCondVardfvalmkDifderivunDifSymvarconsubstunSym Vectorspace*><+>vnegatevzeroSZ maybeSubtract $fEnumNatural $fRealNatural$fIntegralNatural $fNumNatural $fOrdNatural $fEqNatural $fShowNaturalI$fFractionalInterval $fNumInterval$fShowInterval $fOrdInterval $fEqIntervalCFapproxfromCFtoCFapproxCFfromTaylorToCFfac integerRoot2pitansincosatanasinacossqrtexpcoshsinhtanhatanhasinhacoshlogPrec500Fepslift2getEpstoFixed0toFixed1$fRealFloatFixed$fFloatingFixed $fReadFixed $fShowFixed$fFractionalFixed $fNumFixed$fEpsilonPrecPlus20$fEpsilonPrec500$fEpsilonPrec50$fEpsilonPrec10$fEpsilonEpsDiv10 $fEpsilonEps1BFbasebftoFloat1$fRealFloatBigFloat$fFloatingBigFloat$fRealFracBigFloat$fFractionalBigFloat $fOrdBigFloat$fRealBigFloat $fNumBigFloat$fShowBigFloatGHC.BaseStringCRdiv2nmul2nacc_seqexp_drlog_drlog_drxsin_drcos_dratan_dratan_drx power_seriespiBy2piBy4log2sqrt1By2 digitsToBitsdigits sizeinbase floorsqrtround_uk $fShowCReal $fReadCReal$fRealFloatCReal$fRealFracCReal $fRealCReal $fEnumCReal$fFloatingCReal$fFractionalCReal $fNumCReal $fOrdCReal $fEqCRealCDlift$fRealFloatDif $fRealFracDif $fRealDif $fFloatingDif$fFractionalDif$fNumDif$fOrdDif$fEqDif $fReadDif $fShowDifAppConbinOpunOpisCon$fRealFloatSym $fFloatingSym $fRealFracSym $fRealSym $fEnumSym $fIntegralSym$fFractionalSym$fNumSym $fShowSym$fOrdSym$fEqSym