module Online.StatsL1 (
Medianer(..),
onlineL1,
onlineL1',
avL1,
maL1,
absmaL1,
covL1,
corrL1,
betaL1,
alphaL1,
autocorrL1
) where
import Protolude
import qualified Control.Foldl as L
import Control.Foldl (Fold(..))
data Medianer a b = Medianer { medAbsSum :: a, medCount :: b, medianEst :: a}
onlineL1' :: (Ord b, Fractional b) => b -> b -> (a -> b) -> (b -> b) -> Fold a (b,b)
onlineL1' i d f g = Fold step begin extract
where
begin = Medianer 0 0 0
step (Medianer s c m) a = Medianer (g $ s+abs (f a)) (g $ c+1) ((1d) * (m + s' * i * s/c') + d * f a)
where
c' = if c == 0 then 1 else c
s'
| f a > m = 1
| f a < m = 1
| otherwise = 0
extract (Medianer s c m) = (s/c,m)
onlineL1 :: (Ord b, Fractional b) => b -> b -> (a -> b) -> (b -> b) -> Fold a b
onlineL1 i d f g = snd <$> onlineL1' i d f g
avL1 :: (Ord a, Fractional a) => a -> Fold a a
avL1 i = Fold step begin extract
where
begin = Medianer 0 0 0
step (Medianer s c m) a = Medianer (s+a) (c+1) (m + s' * i * s/c)
where
s'
| a > m = 1
| a < m = 1
| otherwise = 0
extract (Medianer _ _ m) = m
maL1 :: (Ord a, Fractional a) => a -> a -> a -> Fold a a
maL1 i d r = onlineL1 i d identity (*r)
absmaL1 :: (Ord a, Fractional a) => a -> a -> a -> Fold a a
absmaL1 i d r = fst <$> onlineL1' i d identity (*r)
covL1 :: (Ord a, Fractional a) => a -> a -> a -> Fold (a,a) a
covL1 i d r = (\xy xbar ybar -> xy xbar * ybar) <$> onlineL1 i d (uncurry (*)) (*r) <*> onlineL1 i d fst (*r) <*> onlineL1 i d snd (*r)
corrL1 :: (Ord a, Floating a) => a -> a -> a -> Fold (a,a) a
corrL1 i d r = (\cov' stdx stdy -> cov' / (stdx * stdy)) <$> covL1 i d r <*> L.premap fst (absmaL1 i d r) <*> L.premap snd (absmaL1 i d r)
betaL1 :: (Ord a, Floating a) => a -> a -> a -> Fold (a,a) a
betaL1 i d r =
(\xy x' y' x2 -> (xy x'*y')/(x2 x'*x')) <$>
L.premap (uncurry (*)) (maL1 i d r) <*>
L.premap fst (maL1 i d r) <*>
L.premap snd (maL1 i d r) <*>
L.premap (\(x,_) -> x*x) (maL1 i d r)
alphaL1 :: (Ord a, Floating a) => a -> a -> a -> Fold (a,a) a
alphaL1 i d r = (\y b x -> y b * x) <$> L.premap fst (maL1 i d r) <*> betaL1 i d r <*> L.premap snd (maL1 i d r)
autocorrL1 :: (Floating a, RealFloat a) => a -> a -> a -> a -> Fold a a
autocorrL1 i d maR corrR =
case maL1 i d maR of
(Fold maStep maBegin maDone) ->
case corrL1 i d corrR of
(Fold corrStep corrBegin corrDone) ->
let begin = (maBegin, corrBegin)
step (maAcc,corrAcc) a = (maStep maAcc a,
if isNaN (maDone maAcc)
then corrAcc
else corrStep corrAcc (maDone maAcc, a))
done = corrDone . snd in
Fold step begin done