-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | L-Estimators for robust statistics -- -- L-Estimators for robust statistics @package order-statistics @version 0.1 module Statistics.Distribution.Beta data BetaDistribution BD :: {-# UNPACK #-} !Double -> {-# UNPACK #-} !Double -> BetaDistribution bdAlpha :: BetaDistribution -> {-# UNPACK #-} !Double bdBeta :: BetaDistribution -> {-# UNPACK #-} !Double betaDistr :: Double -> Double -> BetaDistribution instance Typeable BetaDistribution instance Eq BetaDistribution instance Read BetaDistribution instance Show BetaDistribution instance MaybeVariance BetaDistribution instance ContDistr BetaDistribution instance Variance BetaDistribution instance MaybeMean BetaDistribution instance Mean BetaDistribution instance Distribution BetaDistribution module Statistics.Order -- | L-estimators are linear combinations of order statistics used by -- robust statistics. newtype L r L :: (Int -> IntMap r) -> L r runL :: L r -> Int -> IntMap r -- | Calculate the result of applying an L-estimator after sorting list -- into order statistics (@@) :: (Num r, Ord r) => L r -> [r] -> r -- | Calculate the result of applying an L-estimator to a *pre-sorted* -- vector of order statistics (@!) :: Num r => L r -> Vector r -> r -- | get a vector of the coefficients of an L estimator when applied to an -- input of a given length (@#) :: Num r => L r -> Int -> [r] -- | calculate the breakdown % of an L-estimator breakdown :: (Num r, Eq r) => L r -> Int -- | Tukey's trimean -- --
--   breakdown trimean = 25
--   
trimean :: Fractional r => L r -- |
--   midhinge = trimmed 0.25 midrange
--   breakdown midhinge = 25%
--   
midhinge :: Fractional r => L r -- | interquartile range -- --
--   breakdown iqr = 25%
--   iqr = trimmed 0.25 midrange
--   
iqr :: Fractional r => L r -- | interquartile mean -- --
--   iqm = trimmed 0.25 mean
--   
iqm :: Fractional r => L r -- | Direct estimator for the second L-moment given a sample lscale :: Fractional r => L r -- | Calculate a trimmed L-estimator. If the sample size isn't evenly -- divided, linear interpolation is used as described in -- http://en.wikipedia.org/wiki/Trimmed_mean#Interpolation trimmed :: Fractional r => Rational -> L r -> L r -- | Calculates an interpolated winsorized L-estimator in a manner -- analogous to the trimmed estimator. Unlike trimming, winsorizing -- replaces the extreme values. winsorized, winsorised :: Fractional r => Rational -> L r -> L r -- | Jackknifes the statistic by removing each sample in turn and -- recalculating the L-estimator, requires at least 2 samples! jackknifed :: Fractional r => L r -> L r -- | The average of all of the order statistics. Not robust. -- --
--   breakdown mean = 0%
--   
mean :: Fractional r => L r -- | The sum of all of the order statistics. Not robust. -- --
--   breakdown total = 0%
--   
total :: Num r => L r -- | The minimum value in the sample lmin :: Num r => L r -- | The maximum value in the sample lmax :: Num r => L r -- |
--   midrange = lmax - lmin
--   breakdown midrange = 0%
--   
midrange :: Fractional r => L r nthSmallest :: Num r => Int -> L r nthLargest :: Num r => Int -> L r -- | Compute a quantile with traditional direct averaging quantile :: Fractional r => Rational -> L r -- | The most robust L-estimator possible. -- --
--   breakdown median = 50
--   
median :: Fractional r => L r tercile :: Fractional r => Rational -> L r -- | terciles 1 and 2 -- --
--   breakdown t1 = breakdown t2 = 33%
--   
t1, t2 :: Fractional r => L r quartile :: Fractional r => Rational -> L r -- | quantiles, with breakdown points 25%, 50%, and 25% respectively q1, q3, q2 :: Fractional r => L r quintile :: Fractional r => Rational -> L r -- | quintiles 1 through 4 qu1, qu4, qu3, qu2 :: Fractional r => L r -- |
--   breakdown (percentile n) = min n (100 - n)
--   
percentile :: Fractional r => Rational -> L r permille :: Fractional r => Rational -> L r -- | The Harrell-Davis quantile estimate. Uses multiple order statistics to -- approximate the quantile to reduce variance. hdquantile :: Fractional r => Rational -> L r -- | Compute a quantile using the given estimation strategy to interpolate -- when an exact quantile isn't available quantileBy :: Num r => Estimator r -> Rational -> L r type Estimator r = Rational -> Int -> Estimate r -- | Sample quantile estimators data Estimate r Estimate :: {-# UNPACK #-} !Rational -> (IntMap r) -> Estimate r -- | Inverse of the empirical distribution function r1 :: Num r => Estimator r -- | .. with averaging at discontinuities r2 :: Fractional r => Estimator r -- | The observation numbered closest to Np. NB: does not yield a proper -- median r3 :: Num r => Estimator r -- | Linear interpolation of the empirical distribution function. NB: does -- not yield a proper median. r4 :: Fractional r => Estimator r -- | .. with knots midway through the steps as used in hydrology. This is -- the simplest continuous estimator that yields a correct median r5 :: Fractional r => Estimator r -- | Linear interpolation of the expectations of the order statistics for -- the uniform distribution on [0,1] r6 :: Fractional r => Estimator r -- | Linear interpolation of the modes for the order statistics for the -- uniform distribution on [0,1] r7 :: Fractional r => Estimator r -- | Linear interpolation of the approximate medans for order statistics. r8 :: Fractional r => Estimator r -- | The resulting quantile estimates are approximately unbiased for the -- expected order statistics if x is normally distributed. r9 :: Fractional r => Estimator r -- | When rounding h, this yields the order statistic with the least -- expected square deviation relative to p. r10 :: Fractional r => Estimator r instance Num r => VectorSpace (L r) instance Num r => AdditiveGroup (L r)