module Pandora.Paradigm.Primary.Functor.Product where import Pandora.Pattern.Category (($)) import Pandora.Pattern.Functor.Covariant (Covariant ((<$>))) import Pandora.Pattern.Functor.Extractable (Extractable (extract)) import Pandora.Pattern.Functor.Traversable (Traversable ((->>))) import Pandora.Pattern.Functor.Extendable (Extendable ((=>>))) import Pandora.Pattern.Functor.Comonad (Comonad) import Pandora.Pattern.Functor.Bivariant (Bivariant ((<->))) import Pandora.Pattern.Object.Setoid (Setoid ((==))) import Pandora.Pattern.Object.Semigroup (Semigroup ((+))) import Pandora.Pattern.Object.Monoid (Monoid (zero)) import Pandora.Pattern.Object.Ringoid (Ringoid ((*))) import Pandora.Pattern.Object.Quasiring (Quasiring (one)) import Pandora.Pattern.Object.Semilattice (Infimum ((/\)), Supremum ((\/))) import Pandora.Pattern.Object.Lattice (Lattice) import Pandora.Pattern.Object.Group (Group (invert)) import Pandora.Paradigm.Structure.Ability.Monotonic (Monotonic (iterate)) infixr 1 :*: data Product s a = s :*: a type (:*:) = Product instance Covariant (Product s) where f <$> (s :*: x) = s :*: f x instance Extractable (Product a) where extract (_ :*: y) = y instance Traversable (Product s) where (s :*: x) ->> f = (s :*:) <$> f x instance Extendable (Product s) where (s :*: x) =>> f = s :*: f (s :*: x) instance Comonad (Product s) where instance Bivariant Product where f <-> g = \(s :*: x) -> f s :*: g x instance (Setoid s, Setoid a) => Setoid (Product s a) where (s :*: x) == (s' :*: x') = (s == s') * (x == x') instance (Semigroup s, Semigroup a) => Semigroup (Product s a) where (s :*: x) + (s' :*: x') = s + s' :*: x + x' instance (Monoid s, Monoid a) => Monoid (Product s a) where zero = zero :*: zero instance (Ringoid s, Ringoid a) => Ringoid (Product s a) where (s :*: x) * (s' :*: x') = s * s' :*: x * x' instance (Quasiring s, Quasiring a) => Quasiring (Product s a) where one = one :*: one instance (Infimum s, Infimum a) => Infimum (Product s a) where (s :*: x) /\ (s' :*: x') = s /\ s' :*: x /\ x' instance (Supremum s, Supremum a) => Supremum (Product s a) where (s :*: x) \/ (s' :*: x') = s \/ s' :*: x \/ x' instance (Lattice s, Lattice a) => Lattice (Product s a) where instance (Group s, Group a) => Group (Product s a) where invert (s :*: x) = invert s :*: invert x instance Monotonic e a => Monotonic (Product a e) a where iterate f r (x :*: e) = iterate f (f x r) e delta :: a -> a :*: a delta x = x :*: x swap :: a :*: b -> b :*: a swap (x :*: y) = y :*: x attached :: a :*: b -> a attached (x :*: _) = x curry :: (a :*: b -> c) -> a -> b -> c curry f x y = f $ x :*: y uncurry :: (a -> b -> c) -> (a :*: b -> c) uncurry f (x :*: y) = f x y