Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
Orphan instances
Covariant ((->) a :: Type -> Type) Source # | |
(<$>) :: (a0 -> b) -> (a -> a0) -> a -> b Source # comap :: (a0 -> b) -> (a -> a0) -> a -> b Source # (<$) :: a0 -> (a -> b) -> a -> a0 Source # ($>) :: (a -> a0) -> b -> a -> b Source # void :: (a -> a0) -> a -> () Source # loeb :: (a -> (a0 <:= (->) a)) -> a -> a0 Source # (<&>) :: (a -> a0) -> (a0 -> b) -> a -> b Source # (<$$>) :: Covariant u => (a0 -> b) -> (((->) a :. u) := a0) -> ((->) a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> (((->) a :. (u :. v)) := a0) -> ((->) a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> (((->) a :. (u :. (v :. w))) := a0) -> ((->) a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => (((->) a :. u) := a0) -> (a0 -> b) -> ((->) a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => (((->) a :. (u :. v)) := a0) -> (a0 -> b) -> ((->) a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => (((->) a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> ((->) a :. (u :. (v :. w))) := b Source # | |
Bindable ((->) e :: Type -> Type) Source # | |
(>>=) :: (e -> a) -> (a -> e -> b) -> e -> b Source # (=<<) :: (a -> e -> b) -> (e -> a) -> e -> b Source # bind :: (a -> e -> b) -> (e -> a) -> e -> b Source # join :: (((->) e :. (->) e) := a) -> e -> a Source # (>=>) :: (a -> e -> b) -> (b -> e -> c) -> a -> e -> c Source # (<=<) :: (b -> e -> c) -> (a -> e -> b) -> a -> e -> c Source # ($>>=) :: Covariant u => ((u :. (->) e) := a) -> (a -> e -> b) -> (u :. (->) e) := b Source # | |
Applicative ((->) e :: Type -> Type) Source # | |
(<*>) :: (e -> (a -> b)) -> (e -> a) -> e -> b Source # apply :: (e -> (a -> b)) -> (e -> a) -> e -> b Source # (*>) :: (e -> a) -> (e -> b) -> e -> b Source # (<*) :: (e -> a) -> (e -> b) -> e -> a Source # forever :: (e -> a) -> e -> b Source # (<**>) :: Applicative u => (((->) e :. u) := (a -> b)) -> (((->) e :. u) := a) -> ((->) e :. u) := b Source # (<***>) :: (Applicative u, Applicative v) => (((->) e :. (u :. v)) := (a -> b)) -> (((->) e :. (u :. v)) := a) -> ((->) e :. (u :. v)) := b Source # (<****>) :: (Applicative u, Applicative v, Applicative w) => (((->) e :. (u :. (v :. w))) := (a -> b)) -> (((->) e :. (u :. (v :. w))) := a) -> ((->) e :. (u :. (v :. w))) := b Source # | |
Distributive ((->) e :: Type -> Type) Source # | |
(>>-) :: Covariant u => u a -> (a -> e -> b) -> ((->) e :. u) := b Source # collect :: Covariant u => (a -> e -> b) -> u a -> ((->) e :. u) := b Source # distribute :: Covariant u => ((u :. (->) e) := a) -> ((->) e :. u) := a Source # (>>>-) :: (Covariant u, Covariant v) => ((u :. v) := a) -> (a -> e -> b) -> ((->) e :. (u :. v)) := b Source # (>>>>-) :: (Covariant u, Covariant v, Covariant w) => ((u :. (v :. w)) := a) -> (a -> e -> b) -> ((->) e :. (u :. (v :. w))) := b Source # (>>>>>-) :: (Covariant u, Covariant v, Covariant w, Covariant j) => ((u :. (v :. (w :. j))) := a) -> (a -> e -> b) -> ((->) e :. (u :. (v :. (w :. j)))) := b Source # | |
Pointable ((->) e :: Type -> Type) Source # | |
Representable ((->) e :: Type -> Type) Source # | |
type Representation ((->) e) Source # (<#>) :: Representation ((->) e) -> a <:= (->) e Source # tabulate :: (Representation ((->) e) -> a) -> e -> a Source # index :: (e -> a) -> Representation ((->) e) -> a Source # |