----------------------------------------------------------------------------- -- | -- Module : Text.ParserCombinators.Perm -- Copyright : (c) Daan Leijen 1999-2001, (c) Paolo Martini 2007, (c) Troels Henriksen 2011-2012 -- License : BSD-style (see the file LICENSE) -- -- Maintainer : athas@sigkill.dk -- Stability : stable -- Portability : non-portable (uses existentially quantified data constructors) -- -- This module implements permutation parsers, and is a generalisation -- of 'Text.Parsec.Perm' that will work with any parser combinator -- library. The algorithm is described in: -- -- /Parsing Permutation Phrases,/ -- by Arthur Baars, Andres Loh and Doaitse Swierstra. -- ----------------------------------------------------------------------------- {-# LANGUAGE ExistentialQuantification #-} module Text.Parco.Perm ( PermParser -- abstract , permute , (<||>), (<$$>) , (<|?>), (<$?>) ) where import Control.Applicative infixl 1 <||>, <|?> infixl 2 <$$>, <$?> {--------------------------------------------------------------- test using Parsec -- parse a permutation of * an optional string of 'a's * a required 'b' * an optional 'c' ---------------------------------------------------------------} {- test input = parse (do{ x <- ptest; eof; return x }) "" input ptest :: Parser (String,Char,Char) ptest = permute $ (,,) <$?> ("",many1 (char 'a')) <||> char 'b' <|?> ('_',char 'c') -} {--------------------------------------------------------------- Building a permutation parser ---------------------------------------------------------------} -- | The expression @perm \<||> p@ adds parser @p@ to the permutation -- parser @perm@. The parser @p@ is not allowed to accept empty input - -- use the optional combinator ('<|?>') instead. Returns a -- new permutation parser that includes @p@. (<||>) :: PermParser p (a -> b) -> p a -> PermParser p b perm <||> p = add perm p -- | The expression @f \<$$> p@ creates a fresh permutation parser -- consisting of parser @p@. The the final result of the permutation -- parser is the function @f@ applied to the return value of @p@. The -- parser @p@ is not allowed to accept empty input - use the optional -- combinator ('<$?>') instead. -- -- If the function @f@ takes more than one parameter, the type variable -- @b@ is instantiated to a functional type which combines nicely with -- the adds parser @p@ to the ('<||>') combinator. This -- results in stylized code where a permutation parser starts with a -- combining function @f@ followed by the parsers. The function @f@ -- gets its parameters in the order in which the parsers are specified, -- but actual input can be in any order. (<$$>) :: (a -> b) -> p a -> PermParser p b f <$$> p = newperm f <||> p -- | The expression @perm \<||> (x,p)@ adds parser @p@ to the -- permutation parser @perm@. The parser @p@ is optional - if it can -- not be applied, the default value @x@ will be used instead. Returns -- a new permutation parser that includes the optional parser @p@. (<|?>) :: PermParser p (a -> b) -> (a, p a) -> PermParser p b perm <|?> (x,p) = addopt perm x p -- | The expression @f \<$?> (x,p)@ creates a fresh permutation parser -- consisting of parser @p@. The the final result of the permutation -- parser is the function @f@ applied to the return value of @p@. The -- parser @p@ is optional - if it can not be applied, the default value -- @x@ will be used instead. (<$?>) :: (a -> b) -> (a, p a) -> PermParser p b f <$?> (x,p) = newperm f <|?> (x,p) {--------------------------------------------------------------- The permutation tree ---------------------------------------------------------------} -- | The type @PermParser p a@ denotes a permutation parser that, -- when converted by the 'permute' function, parses -- @s@ streams with user state @st@ and returns a value of -- type @a@ on success. -- -- Normally, a permutation parser is first built with special -- operators like ('<||>') and than transformed into a normal parser -- using 'permute'. data PermParser p a = Perm (Maybe a) [StreamBranch p a] data StreamBranch p a = forall b. Branch (PermParser p (b -> a)) (p b) choice :: Alternative a => [a b] -> a b choice = foldl (<|>) empty -- | The parser @permute perm@ parses a permutation of parsers -- described by @perm@. For example, suppose we want to parse a -- permutation of: an optional string of @a@'s, the character @b@ and -- an optional @c@. This can be described by: -- -- > test = permute (tuple <$?> ("",many1 (char 'a')) -- > <||> char 'b' -- > <|?> ('_',char 'c')) -- > where -- > tuple a b c = (a,b,c) permute :: (Alternative p) => PermParser p a -> p a permute (Perm def xs) = choice (map branch xs ++ none) where none = case def of Nothing -> [] Just x -> [pure x] branch (Branch perm p) = flip id <$> p <*> permute perm -- build permutation trees newperm :: (a -> b) -> PermParser p (a -> b) newperm f = Perm (Just f) [] add :: PermParser p (a -> b) -> p a -> PermParser p b add perm@(Perm _mf fs) p = Perm Nothing (first:map insert fs) where first = Branch perm p insert (Branch perm' p') = Branch (add (mapPerms flip perm') p) p' addopt :: PermParser p (a -> b) -> a -> p a -> PermParser p b addopt perm@(Perm mf fs) x p = Perm (fmap ($ x) mf) (first:map insert fs) where first = Branch perm p insert (Branch perm' p') = Branch (addopt (mapPerms flip perm') x p) p' mapPerms :: (a -> b) -> PermParser p a -> PermParser p b mapPerms f (Perm x xs) = Perm (fmap f x) (map mapBranch xs) where mapBranch (Branch perm p) = Branch (mapPerms (f.) perm) p