/* * Stack-less Just-In-Time compiler * * Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, are * permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this list of * conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, this list * of conditions and the following disclaimer in the documentation and/or other materials * provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* x86 64-bit arch dependent functions. */ /* --------------------------------------------------------------------- */ /* Operators */ /* --------------------------------------------------------------------- */ static sljit_s32 emit_load_imm64(struct sljit_compiler *compiler, sljit_s32 reg, sljit_sw imm) { sljit_u8 *inst; inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + sizeof(sljit_sw)); FAIL_IF(!inst); INC_SIZE(2 + sizeof(sljit_sw)); *inst++ = REX_W | ((reg_map[reg] <= 7) ? 0 : REX_B); *inst++ = U8(MOV_r_i32 | (reg_map[reg] & 0x7)); sljit_unaligned_store_sw(inst, imm); return SLJIT_SUCCESS; } static sljit_s32 emit_do_imm32(struct sljit_compiler *compiler, sljit_u8 rex, sljit_u8 opcode, sljit_sw imm) { sljit_u8 *inst; sljit_uw length = (rex ? 2 : 1) + sizeof(sljit_s32); inst = (sljit_u8*)ensure_buf(compiler, 1 + length); FAIL_IF(!inst); INC_SIZE(length); if (rex) *inst++ = rex; *inst++ = opcode; sljit_unaligned_store_s32(inst, (sljit_s32)imm); return SLJIT_SUCCESS; } static sljit_u8* emit_x86_instruction(struct sljit_compiler *compiler, sljit_uw size, /* The register or immediate operand. */ sljit_s32 a, sljit_sw imma, /* The general operand (not immediate). */ sljit_s32 b, sljit_sw immb) { sljit_u8 *inst; sljit_u8 *buf_ptr; sljit_u8 rex = 0; sljit_u8 reg_lmap_b; sljit_uw flags = size; sljit_uw inst_size; /* The immediate operand must be 32 bit. */ SLJIT_ASSERT(!(a & SLJIT_IMM) || compiler->mode32 || IS_HALFWORD(imma)); /* Both cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BIN_INS | EX86_SHIFT_INS)) != (EX86_BIN_INS | EX86_SHIFT_INS)); /* Size flags not allowed for typed instructions. */ SLJIT_ASSERT(!(flags & (EX86_BIN_INS | EX86_SHIFT_INS)) || (flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) == 0); /* Both size flags cannot be switched on. */ SLJIT_ASSERT((flags & (EX86_BYTE_ARG | EX86_HALF_ARG)) != (EX86_BYTE_ARG | EX86_HALF_ARG)); /* SSE2 and immediate is not possible. */ SLJIT_ASSERT(!(a & SLJIT_IMM) || !(flags & EX86_SSE2)); SLJIT_ASSERT((flags & (EX86_PREF_F2 | EX86_PREF_F3)) != (EX86_PREF_F2 | EX86_PREF_F3) && (flags & (EX86_PREF_F2 | EX86_PREF_66)) != (EX86_PREF_F2 | EX86_PREF_66) && (flags & (EX86_PREF_F3 | EX86_PREF_66)) != (EX86_PREF_F3 | EX86_PREF_66)); size &= 0xf; inst_size = size; if (!compiler->mode32 && !(flags & EX86_NO_REXW)) rex |= REX_W; else if (flags & EX86_REX) rex |= REX; if (flags & (EX86_PREF_F2 | EX86_PREF_F3)) inst_size++; if (flags & EX86_PREF_66) inst_size++; /* Calculate size of b. */ inst_size += 1; /* mod r/m byte. */ if (b & SLJIT_MEM) { if (!(b & OFFS_REG_MASK)) { if (NOT_HALFWORD(immb)) { PTR_FAIL_IF(emit_load_imm64(compiler, TMP_REG2, immb)); immb = 0; if (b & REG_MASK) b |= TO_OFFS_REG(TMP_REG2); else b |= TMP_REG2; } else if (reg_lmap[b & REG_MASK] == 4) b |= TO_OFFS_REG(SLJIT_SP); } if (!(b & REG_MASK)) inst_size += 1 + sizeof(sljit_s32); /* SIB byte required to avoid RIP based addressing. */ else { if (reg_map[b & REG_MASK] >= 8) rex |= REX_B; if (immb != 0 && (!(b & OFFS_REG_MASK) || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP))) { /* Immediate operand. */ if (immb <= 127 && immb >= -128) inst_size += sizeof(sljit_s8); else inst_size += sizeof(sljit_s32); } else if (reg_lmap[b & REG_MASK] == 5) inst_size += sizeof(sljit_s8); if (b & OFFS_REG_MASK) { inst_size += 1; /* SIB byte. */ if (reg_map[OFFS_REG(b)] >= 8) rex |= REX_X; } } } else if (!(flags & EX86_SSE2_OP2)) { if (reg_map[b] >= 8) rex |= REX_B; } else if (freg_map[b] >= 8) rex |= REX_B; if (a & SLJIT_IMM) { if (flags & EX86_BIN_INS) { if (imma <= 127 && imma >= -128) { inst_size += 1; flags |= EX86_BYTE_ARG; } else inst_size += 4; } else if (flags & EX86_SHIFT_INS) { imma &= compiler->mode32 ? 0x1f : 0x3f; if (imma != 1) { inst_size ++; flags |= EX86_BYTE_ARG; } } else if (flags & EX86_BYTE_ARG) inst_size++; else if (flags & EX86_HALF_ARG) inst_size += sizeof(short); else inst_size += sizeof(sljit_s32); } else { SLJIT_ASSERT(!(flags & EX86_SHIFT_INS) || a == SLJIT_PREF_SHIFT_REG); /* reg_map[SLJIT_PREF_SHIFT_REG] is less than 8. */ if (!(flags & EX86_SSE2_OP1)) { if (reg_map[a] >= 8) rex |= REX_R; } else if (freg_map[a] >= 8) rex |= REX_R; } if (rex) inst_size++; inst = (sljit_u8*)ensure_buf(compiler, 1 + inst_size); PTR_FAIL_IF(!inst); /* Encoding the byte. */ INC_SIZE(inst_size); if (flags & EX86_PREF_F2) *inst++ = 0xf2; if (flags & EX86_PREF_F3) *inst++ = 0xf3; if (flags & EX86_PREF_66) *inst++ = 0x66; if (rex) *inst++ = rex; buf_ptr = inst + size; /* Encode mod/rm byte. */ if (!(flags & EX86_SHIFT_INS)) { if ((flags & EX86_BIN_INS) && (a & SLJIT_IMM)) *inst = (flags & EX86_BYTE_ARG) ? GROUP_BINARY_83 : GROUP_BINARY_81; if (a & SLJIT_IMM) *buf_ptr = 0; else if (!(flags & EX86_SSE2_OP1)) *buf_ptr = U8(reg_lmap[a] << 3); else *buf_ptr = U8(freg_lmap[a] << 3); } else { if (a & SLJIT_IMM) { if (imma == 1) *inst = GROUP_SHIFT_1; else *inst = GROUP_SHIFT_N; } else *inst = GROUP_SHIFT_CL; *buf_ptr = 0; } if (!(b & SLJIT_MEM)) { *buf_ptr = U8(*buf_ptr | MOD_REG | (!(flags & EX86_SSE2_OP2) ? reg_lmap[b] : freg_lmap[b])); buf_ptr++; } else if (b & REG_MASK) { reg_lmap_b = reg_lmap[b & REG_MASK]; if (!(b & OFFS_REG_MASK) || (b & OFFS_REG_MASK) == TO_OFFS_REG(SLJIT_SP) || reg_lmap_b == 5) { if (immb != 0 || reg_lmap_b == 5) { if (immb <= 127 && immb >= -128) *buf_ptr |= 0x40; else *buf_ptr |= 0x80; } if (!(b & OFFS_REG_MASK)) *buf_ptr++ |= reg_lmap_b; else { *buf_ptr++ |= 0x04; *buf_ptr++ = U8(reg_lmap_b | (reg_lmap[OFFS_REG(b)] << 3)); } if (immb != 0 || reg_lmap_b == 5) { if (immb <= 127 && immb >= -128) *buf_ptr++ = U8(immb); /* 8 bit displacement. */ else { sljit_unaligned_store_s32(buf_ptr, (sljit_s32)immb); /* 32 bit displacement. */ buf_ptr += sizeof(sljit_s32); } } } else { *buf_ptr++ |= 0x04; *buf_ptr++ = U8(reg_lmap_b | (reg_lmap[OFFS_REG(b)] << 3) | (immb << 6)); } } else { *buf_ptr++ |= 0x04; *buf_ptr++ = 0x25; sljit_unaligned_store_s32(buf_ptr, (sljit_s32)immb); /* 32 bit displacement. */ buf_ptr += sizeof(sljit_s32); } if (a & SLJIT_IMM) { if (flags & EX86_BYTE_ARG) *buf_ptr = U8(imma); else if (flags & EX86_HALF_ARG) sljit_unaligned_store_s16(buf_ptr, (sljit_s16)imma); else if (!(flags & EX86_SHIFT_INS)) sljit_unaligned_store_s32(buf_ptr, (sljit_s32)imma); } return !(flags & EX86_SHIFT_INS) ? inst : (inst + 1); } /* --------------------------------------------------------------------- */ /* Enter / return */ /* --------------------------------------------------------------------- */ static sljit_u8* generate_far_jump_code(struct sljit_jump *jump, sljit_u8 *code_ptr) { sljit_uw type = jump->flags >> TYPE_SHIFT; int short_addr = !(jump->flags & SLJIT_REWRITABLE_JUMP) && !(jump->flags & JUMP_LABEL) && (jump->u.target <= 0xffffffff); /* The relative jump below specialized for this case. */ SLJIT_ASSERT(reg_map[TMP_REG2] >= 8); if (type < SLJIT_JUMP) { /* Invert type. */ *code_ptr++ = U8(get_jump_code(type ^ 0x1) - 0x10); *code_ptr++ = short_addr ? (6 + 3) : (10 + 3); } *code_ptr++ = short_addr ? REX_B : (REX_W | REX_B); *code_ptr++ = MOV_r_i32 | reg_lmap[TMP_REG2]; jump->addr = (sljit_uw)code_ptr; if (jump->flags & JUMP_LABEL) jump->flags |= PATCH_MD; else if (short_addr) sljit_unaligned_store_s32(code_ptr, (sljit_s32)jump->u.target); else sljit_unaligned_store_sw(code_ptr, (sljit_sw)jump->u.target); code_ptr += short_addr ? sizeof(sljit_s32) : sizeof(sljit_sw); *code_ptr++ = REX_B; *code_ptr++ = GROUP_FF; *code_ptr++ = U8(MOD_REG | (type >= SLJIT_FAST_CALL ? CALL_rm : JMP_rm) | reg_lmap[TMP_REG2]); return code_ptr; } static sljit_u8* generate_put_label_code(struct sljit_put_label *put_label, sljit_u8 *code_ptr, sljit_uw max_label) { if (max_label > HALFWORD_MAX) { put_label->addr -= put_label->flags; put_label->flags = PATCH_MD; return code_ptr; } if (put_label->flags == 0) { /* Destination is register. */ code_ptr = (sljit_u8*)put_label->addr - 2 - sizeof(sljit_uw); SLJIT_ASSERT((code_ptr[0] & 0xf8) == REX_W); SLJIT_ASSERT((code_ptr[1] & 0xf8) == MOV_r_i32); if ((code_ptr[0] & 0x07) != 0) { code_ptr[0] = U8(code_ptr[0] & ~0x08); code_ptr += 2 + sizeof(sljit_s32); } else { code_ptr[0] = code_ptr[1]; code_ptr += 1 + sizeof(sljit_s32); } put_label->addr = (sljit_uw)code_ptr; return code_ptr; } code_ptr -= put_label->flags + (2 + sizeof(sljit_uw)); SLJIT_MEMMOVE(code_ptr, code_ptr + (2 + sizeof(sljit_uw)), put_label->flags); SLJIT_ASSERT((code_ptr[0] & 0xf8) == REX_W); if ((code_ptr[1] & 0xf8) == MOV_r_i32) { code_ptr += 2 + sizeof(sljit_uw); SLJIT_ASSERT((code_ptr[0] & 0xf8) == REX_W); } SLJIT_ASSERT(code_ptr[1] == MOV_rm_r); code_ptr[0] = U8(code_ptr[0] & ~0x4); code_ptr[1] = MOV_rm_i32; code_ptr[2] = U8(code_ptr[2] & ~(0x7 << 3)); code_ptr = (sljit_u8*)(put_label->addr - (2 + sizeof(sljit_uw)) + sizeof(sljit_s32)); put_label->addr = (sljit_uw)code_ptr; put_label->flags = 0; return code_ptr; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_uw size; sljit_s32 word_arg_count = 0; sljit_s32 saved_arg_count = 0; sljit_s32 saved_regs_size, tmp, i; #ifdef _WIN64 sljit_s32 saved_float_regs_size; sljit_s32 saved_float_regs_offset = 0; sljit_s32 float_arg_count = 0; #endif /* _WIN64 */ sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_emit_enter(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); /* Emit ENDBR64 at function entry if needed. */ FAIL_IF(emit_endbranch(compiler)); compiler->mode32 = 0; /* Including the return address saved by the call instruction. */ saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); tmp = SLJIT_S0 - saveds; for (i = SLJIT_S0; i > tmp; i--) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; PUSH_REG(reg_lmap[i]); } for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; PUSH_REG(reg_lmap[i]); } #ifdef _WIN64 local_size += SLJIT_LOCALS_OFFSET; saved_float_regs_size = GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, 16); if (saved_float_regs_size > 0) { saved_float_regs_offset = ((local_size + 0xf) & ~0xf); local_size = saved_float_regs_offset + saved_float_regs_size; } #else /* !_WIN64 */ SLJIT_ASSERT(SLJIT_LOCALS_OFFSET == 0); #endif /* _WIN64 */ arg_types >>= SLJIT_ARG_SHIFT; while (arg_types > 0) { if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) { tmp = 0; #ifndef _WIN64 switch (word_arg_count) { case 0: tmp = SLJIT_R2; break; case 1: tmp = SLJIT_R1; break; case 2: tmp = TMP_REG1; break; default: tmp = SLJIT_R3; break; } #else /* !_WIN64 */ switch (word_arg_count + float_arg_count) { case 0: tmp = SLJIT_R3; break; case 1: tmp = SLJIT_R1; break; case 2: tmp = SLJIT_R2; break; default: tmp = TMP_REG1; break; } #endif /* _WIN64 */ if (arg_types & SLJIT_ARG_TYPE_SCRATCH_REG) { if (tmp != SLJIT_R0 + word_arg_count) EMIT_MOV(compiler, SLJIT_R0 + word_arg_count, 0, tmp, 0); } else { EMIT_MOV(compiler, SLJIT_S0 - saved_arg_count, 0, tmp, 0); saved_arg_count++; } word_arg_count++; } else { #ifdef _WIN64 SLJIT_COMPILE_ASSERT(SLJIT_FR0 == 1, float_register_index_start); float_arg_count++; if (float_arg_count != float_arg_count + word_arg_count) FAIL_IF(emit_sse2_load(compiler, (arg_types & SLJIT_ARG_MASK) == SLJIT_ARG_TYPE_F32, float_arg_count, float_arg_count + word_arg_count, 0)); #endif /* _WIN64 */ } arg_types >>= SLJIT_ARG_SHIFT; } local_size = ((local_size + saved_regs_size + 0xf) & ~0xf) - saved_regs_size; compiler->local_size = local_size; #ifdef _WIN64 if (local_size > 0) { if (local_size <= 4 * 4096) { if (local_size > 4096) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096); if (local_size > 2 * 4096) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096 * 2); if (local_size > 3 * 4096) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -4096 * 3); } else { EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, local_size >> 12); EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_MEM1(SLJIT_SP), -4096); BINARY_IMM32(SUB, 4096, SLJIT_SP, 0); BINARY_IMM32(SUB, 1, TMP_REG1, 0); inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); inst[0] = JNE_i8; inst[1] = (sljit_u8)-21; local_size &= 0xfff; } if (local_size > 0) EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(SLJIT_SP), -local_size); } #endif /* _WIN64 */ if (local_size > 0) BINARY_IMM32(SUB, local_size, SLJIT_SP, 0); #ifdef _WIN64 if (saved_float_regs_size > 0) { compiler->mode32 = 1; tmp = SLJIT_FS0 - fsaveds; for (i = SLJIT_FS0; i > tmp; i--) { inst = emit_x86_instruction(compiler, 2 | EX86_SSE2, i, 0, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset); *inst++ = GROUP_0F; *inst = MOVAPS_xm_x; saved_float_regs_offset += 16; } for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) { inst = emit_x86_instruction(compiler, 2 | EX86_SSE2, i, 0, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset); *inst++ = GROUP_0F; *inst = MOVAPS_xm_x; saved_float_regs_offset += 16; } } #endif /* _WIN64 */ return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler, sljit_s32 options, sljit_s32 arg_types, sljit_s32 scratches, sljit_s32 saveds, sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size) { sljit_s32 saved_regs_size; #ifdef _WIN64 sljit_s32 saved_float_regs_size; #endif /* _WIN64 */ CHECK_ERROR(); CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size)); set_set_context(compiler, options, arg_types, scratches, saveds, fscratches, fsaveds, local_size); #ifdef _WIN64 local_size += SLJIT_LOCALS_OFFSET; saved_float_regs_size = GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, 16); if (saved_float_regs_size > 0) local_size = ((local_size + 0xf) & ~0xf) + saved_float_regs_size; #else /* !_WIN64 */ SLJIT_ASSERT(SLJIT_LOCALS_OFFSET == 0); #endif /* _WIN64 */ /* Including the return address saved by the call instruction. */ saved_regs_size = GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1); compiler->local_size = ((local_size + saved_regs_size + 0xf) & ~0xf) - saved_regs_size; return SLJIT_SUCCESS; } static sljit_s32 emit_stack_frame_release(struct sljit_compiler *compiler) { sljit_uw size; sljit_s32 i, tmp; sljit_u8 *inst; #ifdef _WIN64 sljit_s32 saved_float_regs_offset; sljit_s32 fscratches = compiler->fscratches; sljit_s32 fsaveds = compiler->fsaveds; #endif /* _WIN64 */ #ifdef _WIN64 saved_float_regs_offset = GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, 16); if (saved_float_regs_offset > 0) { compiler->mode32 = 1; saved_float_regs_offset = (compiler->local_size - saved_float_regs_offset) & ~0xf; tmp = SLJIT_FS0 - fsaveds; for (i = SLJIT_FS0; i > tmp; i--) { inst = emit_x86_instruction(compiler, 2 | EX86_SSE2, i, 0, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset); *inst++ = GROUP_0F; *inst = MOVAPS_x_xm; saved_float_regs_offset += 16; } for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) { inst = emit_x86_instruction(compiler, 2 | EX86_SSE2, i, 0, SLJIT_MEM1(SLJIT_SP), saved_float_regs_offset); *inst++ = GROUP_0F; *inst = MOVAPS_x_xm; saved_float_regs_offset += 16; } } #endif /* _WIN64 */ if (compiler->local_size > 0) { if (compiler->local_size <= 127) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 4); FAIL_IF(!inst); INC_SIZE(4); *inst++ = REX_W; *inst++ = GROUP_BINARY_83; *inst++ = MOD_REG | ADD | 4; *inst = U8(compiler->local_size); } else { inst = (sljit_u8*)ensure_buf(compiler, 1 + 7); FAIL_IF(!inst); INC_SIZE(7); *inst++ = REX_W; *inst++ = GROUP_BINARY_81; *inst++ = MOD_REG | ADD | 4; sljit_unaligned_store_s32(inst, compiler->local_size); } } tmp = compiler->scratches; for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; POP_REG(reg_lmap[i]); } tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; for (i = tmp; i <= SLJIT_S0; i++) { size = reg_map[i] >= 8 ? 2 : 1; inst = (sljit_u8*)ensure_buf(compiler, 1 + size); FAIL_IF(!inst); INC_SIZE(size); if (reg_map[i] >= 8) *inst++ = REX_B; POP_REG(reg_lmap[i]); } return SLJIT_SUCCESS; } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler) { sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_return_void(compiler)); FAIL_IF(emit_stack_frame_release(compiler)); inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); RET(); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Call / return instructions */ /* --------------------------------------------------------------------- */ #ifndef _WIN64 static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src_ptr) { sljit_s32 src = src_ptr ? (*src_ptr) : 0; sljit_s32 word_arg_count = 0; SLJIT_ASSERT(reg_map[SLJIT_R1] == 6 && reg_map[SLJIT_R3] == 1 && reg_map[TMP_REG1] == 2); SLJIT_ASSERT(!(src & SLJIT_MEM)); /* Remove return value. */ arg_types >>= SLJIT_ARG_SHIFT; while (arg_types) { if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) word_arg_count++; arg_types >>= SLJIT_ARG_SHIFT; } if (word_arg_count == 0) return SLJIT_SUCCESS; if (word_arg_count >= 3) { if (src == SLJIT_R2) *src_ptr = TMP_REG1; EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R2, 0); } return emit_mov(compiler, SLJIT_R2, 0, SLJIT_R0, 0); } #else static sljit_s32 call_with_args(struct sljit_compiler *compiler, sljit_s32 arg_types, sljit_s32 *src_ptr) { sljit_s32 src = src_ptr ? (*src_ptr) : 0; sljit_s32 arg_count = 0; sljit_s32 word_arg_count = 0; sljit_s32 float_arg_count = 0; sljit_s32 types = 0; sljit_s32 data_trandfer = 0; static sljit_u8 word_arg_regs[5] = { 0, SLJIT_R3, SLJIT_R1, SLJIT_R2, TMP_REG1 }; SLJIT_ASSERT(reg_map[SLJIT_R3] == 1 && reg_map[SLJIT_R1] == 2 && reg_map[SLJIT_R2] == 8 && reg_map[TMP_REG1] == 9); SLJIT_ASSERT(!(src & SLJIT_MEM)); arg_types >>= SLJIT_ARG_SHIFT; while (arg_types) { types = (types << SLJIT_ARG_SHIFT) | (arg_types & SLJIT_ARG_MASK); switch (arg_types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: case SLJIT_ARG_TYPE_F32: arg_count++; float_arg_count++; if (arg_count != float_arg_count) data_trandfer = 1; break; default: arg_count++; word_arg_count++; if (arg_count != word_arg_count || arg_count != word_arg_regs[arg_count]) { data_trandfer = 1; if (src == word_arg_regs[arg_count]) { EMIT_MOV(compiler, TMP_REG2, 0, src, 0); *src_ptr = TMP_REG2; } } break; } arg_types >>= SLJIT_ARG_SHIFT; } if (!data_trandfer) return SLJIT_SUCCESS; while (types) { switch (types & SLJIT_ARG_MASK) { case SLJIT_ARG_TYPE_F64: if (arg_count != float_arg_count) FAIL_IF(emit_sse2_load(compiler, 0, arg_count, float_arg_count, 0)); arg_count--; float_arg_count--; break; case SLJIT_ARG_TYPE_F32: if (arg_count != float_arg_count) FAIL_IF(emit_sse2_load(compiler, 1, arg_count, float_arg_count, 0)); arg_count--; float_arg_count--; break; default: if (arg_count != word_arg_count || arg_count != word_arg_regs[arg_count]) EMIT_MOV(compiler, word_arg_regs[arg_count], 0, word_arg_count, 0); arg_count--; word_arg_count--; break; } types >>= SLJIT_ARG_SHIFT; } return SLJIT_SUCCESS; } #endif SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types) { CHECK_ERROR_PTR(); CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types)); compiler->mode32 = 0; PTR_FAIL_IF(call_with_args(compiler, arg_types, NULL)); if (type & SLJIT_CALL_RETURN) { PTR_FAIL_IF(emit_stack_frame_release(compiler)); type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP); } #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_jump(compiler, type); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 arg_types, sljit_s32 src, sljit_sw srcw) { CHECK_ERROR(); CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw)); compiler->mode32 = 0; if (src & SLJIT_MEM) { ADJUST_LOCAL_OFFSET(src, srcw); EMIT_MOV(compiler, TMP_REG2, 0, src, srcw); src = TMP_REG2; } if (type & SLJIT_CALL_RETURN) { if (src >= SLJIT_FIRST_SAVED_REG && src <= SLJIT_S0) { EMIT_MOV(compiler, TMP_REG2, 0, src, srcw); src = TMP_REG2; } FAIL_IF(emit_stack_frame_release(compiler)); type = SLJIT_JUMP; } FAIL_IF(call_with_args(compiler, arg_types, &src)); #if (defined SLJIT_VERBOSE && SLJIT_VERBOSE) \ || (defined SLJIT_ARGUMENT_CHECKS && SLJIT_ARGUMENT_CHECKS) compiler->skip_checks = 1; #endif return sljit_emit_ijump(compiler, type, src, srcw); } SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw) { sljit_u8 *inst; CHECK_ERROR(); CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw)); ADJUST_LOCAL_OFFSET(dst, dstw); if (FAST_IS_REG(dst)) { if (reg_map[dst] < 8) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); POP_REG(reg_lmap[dst]); return SLJIT_SUCCESS; } inst = (sljit_u8*)ensure_buf(compiler, 1 + 2); FAIL_IF(!inst); INC_SIZE(2); *inst++ = REX_B; POP_REG(reg_lmap[dst]); return SLJIT_SUCCESS; } /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw); FAIL_IF(!inst); *inst++ = POP_rm; return SLJIT_SUCCESS; } static sljit_s32 emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw) { sljit_u8 *inst; if (FAST_IS_REG(src)) { if (reg_map[src] < 8) { inst = (sljit_u8*)ensure_buf(compiler, 1 + 1 + 1); FAIL_IF(!inst); INC_SIZE(1 + 1); PUSH_REG(reg_lmap[src]); } else { inst = (sljit_u8*)ensure_buf(compiler, 1 + 2 + 1); FAIL_IF(!inst); INC_SIZE(2 + 1); *inst++ = REX_B; PUSH_REG(reg_lmap[src]); } } else { /* REX_W is not necessary (src is not immediate). */ compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw); FAIL_IF(!inst); *inst++ = GROUP_FF; *inst |= PUSH_rm; inst = (sljit_u8*)ensure_buf(compiler, 1 + 1); FAIL_IF(!inst); INC_SIZE(1); } RET(); return SLJIT_SUCCESS; } /* --------------------------------------------------------------------- */ /* Extend input */ /* --------------------------------------------------------------------- */ static sljit_s32 emit_mov_int(struct sljit_compiler *compiler, sljit_s32 sign, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw) { sljit_u8* inst; sljit_s32 dst_r; compiler->mode32 = 0; if (src & SLJIT_IMM) { if (FAST_IS_REG(dst)) { if (sign || ((sljit_uw)srcw <= 0x7fffffff)) { inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_s32)srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; return SLJIT_SUCCESS; } return emit_load_imm64(compiler, dst, srcw); } compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, (sljit_sw)(sljit_s32)srcw, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_i32; compiler->mode32 = 0; return SLJIT_SUCCESS; } dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1; if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) dst_r = src; else { if (sign) { inst = emit_x86_instruction(compiler, 1, dst_r, 0, src, srcw); FAIL_IF(!inst); *inst++ = MOVSXD_r_rm; } else { compiler->mode32 = 1; FAIL_IF(emit_mov(compiler, dst_r, 0, src, srcw)); compiler->mode32 = 0; } } if (dst & SLJIT_MEM) { compiler->mode32 = 1; inst = emit_x86_instruction(compiler, 1, dst_r, 0, dst, dstw); FAIL_IF(!inst); *inst = MOV_rm_r; compiler->mode32 = 0; } return SLJIT_SUCCESS; } static sljit_s32 skip_frames_before_return(struct sljit_compiler *compiler) { sljit_s32 tmp, size; /* Don't adjust shadow stack if it isn't enabled. */ if (!cpu_has_shadow_stack()) return SLJIT_SUCCESS; size = compiler->local_size; tmp = compiler->scratches; if (tmp >= SLJIT_FIRST_SAVED_REG) size += (tmp - SLJIT_FIRST_SAVED_REG + 1) * SSIZE_OF(sw); tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG; if (SLJIT_S0 >= tmp) size += (SLJIT_S0 - tmp + 1) * SSIZE_OF(sw); return adjust_shadow_stack(compiler, SLJIT_MEM1(SLJIT_SP), size); }