{-# LANGUAGE DeriveDataTypeable #-} {-# OPTIONS_GHC -fno-warn-deprecations #-} -- usage of Error typeclass module Database.Persist.Types.Base where import Control.Arrow (second) import Control.Exception (Exception) import Control.Monad.Trans.Error (Error (..)) import qualified Data.Aeson as A import Data.Bits (shiftL, shiftR) import Data.ByteString (ByteString, foldl') import qualified Data.ByteString as BS import qualified Data.ByteString.Base64 as B64 import qualified Data.ByteString.Char8 as BS8 import qualified Data.HashMap.Strict as HM import Data.Int (Int64) import Data.Map (Map) import qualified Data.Scientific import Data.Text (Text, pack) import qualified Data.Text as T import qualified Data.Text.Encoding as TE import Data.Text.Encoding.Error (lenientDecode) import Data.Time (Day, TimeOfDay, UTCTime) import Data.Typeable (Typeable) import qualified Data.Vector as V import Data.Word (Word32) import Numeric (showHex, readHex) import Web.PathPieces (PathPiece(..)) import Web.HttpApiData (ToHttpApiData (..), FromHttpApiData (..), parseUrlPieceMaybe, showTextData, readTextData, parseBoundedTextData) -- | A 'Checkmark' should be used as a field type whenever a -- uniqueness constraint should guarantee that a certain kind of -- record may appear at most once, but other kinds of records may -- appear any number of times. -- -- /NOTE:/ You need to mark any @Checkmark@ fields as @nullable@ -- (see the following example). -- -- For example, suppose there's a @Location@ entity that -- represents where a user has lived: -- -- @ -- Location -- user UserId -- name Text -- current Checkmark nullable -- -- UniqueLocation user current -- @ -- -- The @UniqueLocation@ constraint allows any number of -- 'Inactive' @Location@s to be @current@. However, there may be -- at most one @current@ @Location@ per user (i.e., either zero -- or one per user). -- -- This data type works because of the way that SQL treats -- @NULL@able fields within uniqueness constraints. The SQL -- standard says that @NULL@ values should be considered -- different, so we represent 'Inactive' as SQL @NULL@, thus -- allowing any number of 'Inactive' records. On the other hand, -- we represent 'Active' as @TRUE@, so the uniqueness constraint -- will disallow more than one 'Active' record. -- -- /Note:/ There may be DBMSs that do not respect the SQL -- standard's treatment of @NULL@ values on uniqueness -- constraints, please check if this data type works before -- relying on it. -- -- The SQL @BOOLEAN@ type is used because it's the smallest data -- type available. Note that we never use @FALSE@, just @TRUE@ -- and @NULL@. Provides the same behavior @Maybe ()@ would if -- @()@ was a valid 'PersistField'. data Checkmark = Active -- ^ When used on a uniqueness constraint, there -- may be at most one 'Active' record. | Inactive -- ^ When used on a uniqueness constraint, there -- may be any number of 'Inactive' records. deriving (Eq, Ord, Read, Show, Enum, Bounded) instance ToHttpApiData Checkmark where toUrlPiece = showTextData instance FromHttpApiData Checkmark where parseUrlPiece = parseBoundedTextData instance PathPiece Checkmark where toPathPiece Active = "active" toPathPiece Inactive = "inactive" fromPathPiece "active" = Just Active fromPathPiece "inactive" = Just Inactive fromPathPiece _ = Nothing data IsNullable = Nullable !WhyNullable | NotNullable deriving (Eq, Show) -- | The reason why a field is 'nullable' is very important. A -- field that is nullable because of a @Maybe@ tag will have its -- type changed from @A@ to @Maybe A@. OTOH, a field that is -- nullable because of a @nullable@ tag will remain with the same -- type. data WhyNullable = ByMaybeAttr | ByNullableAttr deriving (Eq, Show) -- | An 'EntityDef' represents the information that @persistent@ knows -- about an Entity. It uses this information to generate the Haskell -- datatype, the SQL migrations, and other relevant conversions. data EntityDef = EntityDef { entityHaskell :: !HaskellName -- ^ The name of the entity as Haskell understands it. , entityDB :: !DBName -- ^ The name of the database table corresponding to the entity. , entityId :: !FieldDef -- ^ The entity's primary key or identifier. , entityAttrs :: ![Attr] -- ^ The @persistent@ entity syntax allows you to add arbitrary 'Attr's -- to an entity using the @!@ operator. Those attributes are stored in -- this list. , entityFields :: ![FieldDef] -- ^ The fields for this entity. Note that the ID field will not be -- present in this list. To get all of the fields for an entity, use -- 'keyAndEntityFields'. , entityUniques :: ![UniqueDef] -- ^ The Uniqueness constraints for this entity. , entityForeigns:: ![ForeignDef] -- ^ The foreign key relationships that this entity has to other -- entities. , entityDerives :: ![Text] -- ^ A list of type classes that have been derived for this entity. , entityExtra :: !(Map Text [ExtraLine]) , entitySum :: !Bool -- ^ Whether or not this entity represents a sum type in the database. , entityComments :: !(Maybe Text) -- ^ Optional comments on the entity. -- -- @since 2.10.0 } deriving (Show, Eq, Read, Ord) entityPrimary :: EntityDef -> Maybe CompositeDef entityPrimary t = case fieldReference (entityId t) of CompositeRef c -> Just c _ -> Nothing entityKeyFields :: EntityDef -> [FieldDef] entityKeyFields ent = case entityPrimary ent of Nothing -> [entityId ent] Just pdef -> compositeFields pdef keyAndEntityFields :: EntityDef -> [FieldDef] keyAndEntityFields ent = case entityPrimary ent of Nothing -> entityId ent : entityFields ent Just _ -> entityFields ent type ExtraLine = [Text] newtype HaskellName = HaskellName { unHaskellName :: Text } deriving (Show, Eq, Read, Ord) newtype DBName = DBName { unDBName :: Text } deriving (Show, Eq, Read, Ord) type Attr = Text data FieldType = FTTypeCon (Maybe Text) Text -- ^ Optional module and name. | FTApp FieldType FieldType | FTList FieldType deriving (Show, Eq, Read, Ord) -- | A 'FieldDef' represents the inormation that @persistent@ knows about -- a field of a datatype. This includes information used to parse the field -- out of the database and what the field corresponds to. data FieldDef = FieldDef { fieldHaskell :: !HaskellName -- ^ The name of the field. Note that this does not corresponds to the -- record labels generated for the particular entity - record labels -- are generated with the type name prefixed to the field, so -- a 'FieldDef' that contains a @'HaskellName' "name"@ for a type -- @User@ will have a record field @userName@. , fieldDB :: !DBName -- ^ The name of the field in the database. For SQL databases, this -- corresponds to the column name. , fieldType :: !FieldType -- ^ The type of the field in Haskell. , fieldSqlType :: !SqlType -- ^ The type of the field in a SQL database. , fieldAttrs :: ![Attr] -- ^ User annotations for a field. These are provided with the @!@ -- operator. , fieldStrict :: !Bool -- ^ If this is 'True', then the Haskell datatype will have a strict -- record field. The default value for this is 'True'. , fieldReference :: !ReferenceDef , fieldComments :: !(Maybe Text) -- ^ Optional comments for a 'Field'. There is not currently a way to -- attach comments to a field in the quasiquoter. -- -- @since 2.10.0 } deriving (Show, Eq, Read, Ord) -- | There are 3 kinds of references -- 1) composite (to fields that exist in the record) -- 2) single field -- 3) embedded data ReferenceDef = NoReference | ForeignRef !HaskellName !FieldType -- ^ A ForeignRef has a late binding to the EntityDef it references via HaskellName and has the Haskell type of the foreign key in the form of FieldType | EmbedRef EmbedEntityDef | CompositeRef CompositeDef | SelfReference -- ^ A SelfReference stops an immediate cycle which causes non-termination at compile-time (issue #311). deriving (Show, Eq, Read, Ord) -- | An EmbedEntityDef is the same as an EntityDef -- But it is only used for fieldReference -- so it only has data needed for embedding data EmbedEntityDef = EmbedEntityDef { embeddedHaskell :: !HaskellName , embeddedFields :: ![EmbedFieldDef] } deriving (Show, Eq, Read, Ord) -- | An EmbedFieldDef is the same as a FieldDef -- But it is only used for embeddedFields -- so it only has data needed for embedding data EmbedFieldDef = EmbedFieldDef { emFieldDB :: !DBName , emFieldEmbed :: Maybe EmbedEntityDef , emFieldCycle :: Maybe HaskellName -- ^ 'emFieldEmbed' can create a cycle (issue #311) -- when a cycle is detected, 'emFieldEmbed' will be Nothing -- and 'emFieldCycle' will be Just } deriving (Show, Eq, Read, Ord) toEmbedEntityDef :: EntityDef -> EmbedEntityDef toEmbedEntityDef ent = embDef where embDef = EmbedEntityDef { embeddedHaskell = entityHaskell ent , embeddedFields = map toEmbedFieldDef $ entityFields ent } toEmbedFieldDef :: FieldDef -> EmbedFieldDef toEmbedFieldDef field = EmbedFieldDef { emFieldDB = fieldDB field , emFieldEmbed = case fieldReference field of EmbedRef em -> Just em SelfReference -> Just embDef _ -> Nothing , emFieldCycle = case fieldReference field of SelfReference -> Just $ entityHaskell ent _ -> Nothing } -- Type for storing the Uniqueness constraint in the Schema. -- Assume you have the following schema with a uniqueness -- constraint: -- Person -- name String -- age Int -- UniqueAge age -- -- This will be represented as: -- UniqueDef (HaskellName (packPTH "UniqueAge")) -- (DBName (packPTH "unique_age")) [(HaskellName (packPTH "age"), DBName (packPTH "age"))] [] -- data UniqueDef = UniqueDef { uniqueHaskell :: !HaskellName , uniqueDBName :: !DBName , uniqueFields :: ![(HaskellName, DBName)] , uniqueAttrs :: ![Attr] } deriving (Show, Eq, Read, Ord) data CompositeDef = CompositeDef { compositeFields :: ![FieldDef] , compositeAttrs :: ![Attr] } deriving (Show, Eq, Read, Ord) -- | Used instead of FieldDef -- to generate a smaller amount of code type ForeignFieldDef = (HaskellName, DBName) data ForeignDef = ForeignDef { foreignRefTableHaskell :: !HaskellName , foreignRefTableDBName :: !DBName , foreignConstraintNameHaskell :: !HaskellName , foreignConstraintNameDBName :: !DBName , foreignFields :: ![(ForeignFieldDef, ForeignFieldDef)] -- this entity plus the primary entity , foreignAttrs :: ![Attr] , foreignNullable :: Bool } deriving (Show, Eq, Read, Ord) data PersistException = PersistError Text -- ^ Generic Exception | PersistMarshalError Text | PersistInvalidField Text | PersistForeignConstraintUnmet Text | PersistMongoDBError Text | PersistMongoDBUnsupported Text deriving (Show, Typeable) instance Exception PersistException instance Error PersistException where strMsg = PersistError . pack -- | A raw value which can be stored in any backend and can be marshalled to -- and from a 'PersistField'. data PersistValue = PersistText Text | PersistByteString ByteString | PersistInt64 Int64 | PersistDouble Double | PersistRational Rational | PersistBool Bool | PersistDay Day | PersistTimeOfDay TimeOfDay | PersistUTCTime UTCTime | PersistNull | PersistList [PersistValue] | PersistMap [(Text, PersistValue)] | PersistObjectId ByteString -- ^ Intended especially for MongoDB backend | PersistArray [PersistValue] -- ^ Intended especially for PostgreSQL backend for text arrays | PersistDbSpecific ByteString -- ^ Using 'PersistDbSpecific' allows you to use types specific to a particular backend -- For example, below is a simple example of the PostGIS geography type: -- -- @ -- data Geo = Geo ByteString -- -- instance PersistField Geo where -- toPersistValue (Geo t) = PersistDbSpecific t -- -- fromPersistValue (PersistDbSpecific t) = Right $ Geo $ Data.ByteString.concat ["'", t, "'"] -- fromPersistValue _ = Left "Geo values must be converted from PersistDbSpecific" -- -- instance PersistFieldSql Geo where -- sqlType _ = SqlOther "GEOGRAPHY(POINT,4326)" -- -- toPoint :: Double -> Double -> Geo -- toPoint lat lon = Geo $ Data.ByteString.concat ["'POINT(", ps $ lon, " ", ps $ lat, ")'"] -- where ps = Data.Text.pack . show -- @ -- -- If Foo has a geography field, we can then perform insertions like the following: -- -- @ -- insert $ Foo (toPoint 44 44) -- @ -- deriving (Show, Read, Eq, Typeable, Ord) instance ToHttpApiData PersistValue where toUrlPiece val = case fromPersistValueText val of Left e -> error $ T.unpack e Right y -> y instance FromHttpApiData PersistValue where parseUrlPiece input = PersistInt64 <$> parseUrlPiece input PersistList <$> readTextData input PersistText <$> return input where infixl 3 Left _ y = y x _ = x instance PathPiece PersistValue where toPathPiece = toUrlPiece fromPathPiece = parseUrlPieceMaybe fromPersistValueText :: PersistValue -> Either Text Text fromPersistValueText (PersistText s) = Right s fromPersistValueText (PersistByteString bs) = Right $ TE.decodeUtf8With lenientDecode bs fromPersistValueText (PersistInt64 i) = Right $ T.pack $ show i fromPersistValueText (PersistDouble d) = Right $ T.pack $ show d fromPersistValueText (PersistRational r) = Right $ T.pack $ show r fromPersistValueText (PersistDay d) = Right $ T.pack $ show d fromPersistValueText (PersistTimeOfDay d) = Right $ T.pack $ show d fromPersistValueText (PersistUTCTime d) = Right $ T.pack $ show d fromPersistValueText PersistNull = Left "Unexpected null" fromPersistValueText (PersistBool b) = Right $ T.pack $ show b fromPersistValueText (PersistList _) = Left "Cannot convert PersistList to Text" fromPersistValueText (PersistMap _) = Left "Cannot convert PersistMap to Text" fromPersistValueText (PersistObjectId _) = Left "Cannot convert PersistObjectId to Text" fromPersistValueText (PersistArray _) = Left "Cannot convert PersistArray to Text" fromPersistValueText (PersistDbSpecific _) = Left "Cannot convert PersistDbSpecific to Text. See the documentation of PersistDbSpecific for an example of using a custom database type with Persistent." instance A.ToJSON PersistValue where toJSON (PersistText t) = A.String $ T.cons 's' t toJSON (PersistByteString b) = A.String $ T.cons 'b' $ TE.decodeUtf8 $ B64.encode b toJSON (PersistInt64 i) = A.Number $ fromIntegral i toJSON (PersistDouble d) = A.Number $ Data.Scientific.fromFloatDigits d toJSON (PersistRational r) = A.String $ T.pack $ 'r' : show r toJSON (PersistBool b) = A.Bool b toJSON (PersistTimeOfDay t) = A.String $ T.pack $ 't' : show t toJSON (PersistUTCTime u) = A.String $ T.pack $ 'u' : show u toJSON (PersistDay d) = A.String $ T.pack $ 'd' : show d toJSON PersistNull = A.Null toJSON (PersistList l) = A.Array $ V.fromList $ map A.toJSON l toJSON (PersistMap m) = A.object $ map (second A.toJSON) m toJSON (PersistDbSpecific b) = A.String $ T.cons 'p' $ TE.decodeUtf8 $ B64.encode b toJSON (PersistArray a) = A.Array $ V.fromList $ map A.toJSON a toJSON (PersistObjectId o) = A.toJSON $ showChar 'o' $ showHexLen 8 (bs2i four) $ showHexLen 16 (bs2i eight) "" where (four, eight) = BS8.splitAt 4 o -- taken from crypto-api bs2i :: ByteString -> Integer bs2i bs = foldl' (\i b -> (i `shiftL` 8) + fromIntegral b) 0 bs {-# INLINE bs2i #-} -- showHex of n padded with leading zeros if necessary to fill d digits -- taken from Data.BSON showHexLen :: (Show n, Integral n) => Int -> n -> ShowS showHexLen d n = showString (replicate (d - sigDigits n) '0') . showHex n where sigDigits 0 = 1 sigDigits n' = truncate (logBase (16 :: Double) $ fromIntegral n') + 1 instance A.FromJSON PersistValue where parseJSON (A.String t0) = case T.uncons t0 of Nothing -> fail "Null string" Just ('p', t) -> either (\_ -> fail "Invalid base64") (return . PersistDbSpecific) $ B64.decode $ TE.encodeUtf8 t Just ('s', t) -> return $ PersistText t Just ('b', t) -> either (\_ -> fail "Invalid base64") (return . PersistByteString) $ B64.decode $ TE.encodeUtf8 t Just ('t', t) -> fmap PersistTimeOfDay $ readMay t Just ('u', t) -> fmap PersistUTCTime $ readMay t Just ('d', t) -> fmap PersistDay $ readMay t Just ('r', t) -> fmap PersistRational $ readMay t Just ('o', t) -> maybe (fail "Invalid base64") (return . PersistObjectId) $ fmap (i2bs (8 * 12) . fst) $ headMay $ readHex $ T.unpack t Just (c, _) -> fail $ "Unknown prefix: " ++ [c] where headMay [] = Nothing headMay (x:_) = Just x readMay t = case reads $ T.unpack t of (x, _):_ -> return x [] -> fail "Could not read" -- taken from crypto-api -- |@i2bs bitLen i@ converts @i@ to a 'ByteString' of @bitLen@ bits (must be a multiple of 8). i2bs :: Int -> Integer -> BS.ByteString i2bs l i = BS.unfoldr (\l' -> if l' < 0 then Nothing else Just (fromIntegral (i `shiftR` l'), l' - 8)) (l-8) {-# INLINE i2bs #-} parseJSON (A.Number n) = return $ if fromInteger (floor n) == n then PersistInt64 $ floor n else PersistDouble $ fromRational $ toRational n parseJSON (A.Bool b) = return $ PersistBool b parseJSON A.Null = return $ PersistNull parseJSON (A.Array a) = fmap PersistList (mapM A.parseJSON $ V.toList a) parseJSON (A.Object o) = fmap PersistMap $ mapM go $ HM.toList o where go (k, v) = fmap ((,) k) $ A.parseJSON v -- | A SQL data type. Naming attempts to reflect the underlying Haskell -- datatypes, eg SqlString instead of SqlVarchar. Different SQL databases may -- have different translations for these types. data SqlType = SqlString | SqlInt32 | SqlInt64 | SqlReal | SqlNumeric Word32 Word32 | SqlBool | SqlDay | SqlTime | SqlDayTime -- ^ Always uses UTC timezone | SqlBlob | SqlOther T.Text -- ^ a backend-specific name deriving (Show, Read, Eq, Typeable, Ord) data PersistFilter = Eq | Ne | Gt | Lt | Ge | Le | In | NotIn | BackendSpecificFilter T.Text deriving (Read, Show) data UpdateException = KeyNotFound String | UpsertError String deriving Typeable instance Show UpdateException where show (KeyNotFound key) = "Key not found during updateGet: " ++ key show (UpsertError msg) = "Error during upsert: " ++ msg instance Exception UpdateException data OnlyUniqueException = OnlyUniqueException String deriving Typeable instance Show OnlyUniqueException where show (OnlyUniqueException uniqueMsg) = "Expected only one unique key, got " ++ uniqueMsg instance Exception OnlyUniqueException data PersistUpdate = Assign | Add | Subtract | Multiply | Divide | BackendSpecificUpdate T.Text deriving (Read, Show)