{-# LANGUAGE RankNTypes, TypeFamilies, BangPatterns, CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif {-| This module provides @pipes@ utilities for \"text streams\", which are streams of 'Text' chunks. The individual chunks are uniformly @strict@, but a 'Producer' can be converted to and from lazy 'Text's, though this is generally unwise. Where pipes IO replaces lazy IO, 'Producer Text m r' replaces lazy 'Text'. An 'IO.Handle' can be associated with a 'Producer' or 'Consumer' according as it is read or written to. To stream to or from 'IO.Handle's, one can use 'fromHandle' or 'toHandle'. For example, the following program copies a document from one file to another: > import Pipes > import qualified Data.Text.Pipes as Text > import System.IO > > main = > withFile "inFile.txt" ReadMode $ \hIn -> > withFile "outFile.txt" WriteMode $ \hOut -> > runEffect $ Text.fromHandle hIn >-> Text.toHandle hOut To stream from files, the following is perhaps more Prelude-like (note that it uses Pipes.Safe): > import Pipes > import qualified Data.Text.Pipes as Text > import Pipes.Safe > > main = runSafeT $ runEffect $ Text.readFile "inFile.txt" >-> Text.writeFile "outFile.txt" You can stream to and from 'stdin' and 'stdout' using the predefined 'stdin' and 'stdout' proxies, as with the following \"echo\" program: > main = runEffect $ Text.stdin >-> Text.stdout You can also translate pure lazy 'TL.Text's to and from proxies: > main = runEffect $ Text.fromLazy (TL.pack "Hello, world!\n") >-> Text.stdout In addition, this module provides many functions equivalent to lazy 'Text' functions so that you can transform or fold text streams. For example, to stream only the first three lines of 'stdin' to 'stdout' you might write: > import Pipes > import qualified Pipes.Text as Text > import qualified Pipes.Parse as Parse > > main = runEffect $ takeLines 3 Text.stdin >-> Text.stdout > where > takeLines n = Text.unlines . Parse.takeFree n . Text.lines The above program will never bring more than one chunk of text (~ 32 KB) into memory, no matter how long the lines are. Note that functions in this library are designed to operate on streams that are insensitive to text boundaries. This means that they may freely split text into smaller texts, /discard empty texts/. However, apart from the special case of 'concatMap', they will /never concatenate texts/ in order to provide strict upper bounds on memory usage -- with the single exception of 'concatMap'. -} module Pipes.Text ( -- * Producers fromLazy , stdin , fromHandle , readFile -- * Consumers , stdout , toHandle , writeFile -- * Pipes , map , concatMap , take , drop , takeWhile , dropWhile , filter , scan , encodeUtf8 , pack , unpack , toCaseFold , toLower , toUpper , stripStart -- * Folds , toLazy , toLazyM , foldChars , head , last , null , length , any , all , maximum , minimum , find , index , count -- * Primitive Character Parsers -- $parse , nextChar , drawChar , unDrawChar , peekChar , isEndOfChars -- * Parsing Lenses , splitAt , span , break , groupBy , group , word , line -- * Decoding Lenses , decodeUtf8 , codec -- * Codecs , utf8 , utf16_le , utf16_be , utf32_le , utf32_be -- * Other Decoding/Encoding Functions , decodeIso8859_1 , decodeAscii , encodeIso8859_1 , encodeAscii -- * FreeT Splitters , chunksOf , splitsWith , splits -- , groupsBy -- , groups , lines , words -- * Transformations , intersperse , packChars -- * Joiners , intercalate , unlines , unwords -- * Re-exports -- $reexports , module Data.ByteString , module Data.Text , module Data.Profunctor , module Data.Word , module Pipes.Parse , module Pipes.Group , module Pipes.Text.Internal ) where import Control.Exception (throwIO, try) import Control.Applicative ((<*)) import Control.Monad (liftM, unless, join) import Control.Monad.Trans.State.Strict (StateT(..), modify) import Data.Monoid ((<>)) import qualified Data.Text as T import qualified Data.Text.IO as T import qualified Data.Text.Encoding as TE import qualified Data.Text.Encoding.Error as TE import Data.Text (Text) import qualified Data.Text.Lazy as TL import qualified Data.Text.Lazy.IO as TL import Data.Text.Lazy.Internal (foldrChunks, defaultChunkSize) import Data.ByteString.Unsafe (unsafeTake, unsafeDrop) import Data.ByteString (ByteString) import qualified Data.ByteString as B import qualified Data.ByteString.Char8 as B8 import Data.Char (ord, isSpace) import Data.Functor.Constant (Constant(Constant, getConstant)) import Data.Functor.Identity (Identity) import Data.Profunctor (Profunctor) import qualified Data.Profunctor import qualified Data.List as List import Foreign.C.Error (Errno(Errno), ePIPE) import qualified GHC.IO.Exception as G import Pipes import qualified Pipes.ByteString as PB import qualified Pipes.Text.Internal as PI import Pipes.Text.Internal import Pipes.Core (respond, Server') import Pipes.Group (concats, intercalates, FreeT(..), FreeF(..)) import qualified Pipes.Group as PG import qualified Pipes.Parse as PP import Pipes.Parse (Parser) import qualified Pipes.Safe.Prelude as Safe import qualified Pipes.Safe as Safe import Pipes.Safe (MonadSafe(..), Base(..)) import qualified Pipes.Prelude as P import qualified System.IO as IO import Data.Char (isSpace) import Data.Word (Word8) import Prelude hiding ( all, any, break, concat, concatMap, drop, dropWhile, elem, filter, head, last, lines, length, map, maximum, minimum, notElem, null, readFile, span, splitAt, take, takeWhile, unlines, unwords, words, writeFile ) -- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's fromLazy :: (Monad m) => TL.Text -> Producer' Text m () fromLazy = foldrChunks (\e a -> yield e >> a) (return ()) {-# INLINE fromLazy #-} -- | Stream text from 'stdin' stdin :: MonadIO m => Producer Text m () stdin = fromHandle IO.stdin {-# INLINE stdin #-} {-| Convert a 'IO.Handle' into a text stream using a text size determined by the good sense of the text library; note that this is distinctly slower than @decideUtf8 (Pipes.ByteString.fromHandle h)@ but uses the system encoding and has other `Data.Text.IO` features -} fromHandle :: MonadIO m => IO.Handle -> Producer Text m () fromHandle h = go where go = do txt <- liftIO (T.hGetChunk h) unless (T.null txt) ( do yield txt go ) {-# INLINABLE fromHandle#-} {-| Stream text from a file in the simple fashion of @Data.Text.IO@ >>> runSafeT $ runEffect $ Text.readFile "hello.hs" >-> Text.map toUpper >-> hoist lift Text.stdout MAIN = PUTSTRLN "HELLO WORLD" -} readFile :: MonadSafe m => FilePath -> Producer Text m () readFile file = Safe.withFile file IO.ReadMode fromHandle {-# INLINE readFile #-} {-| Stream text to 'stdout' Unlike 'toHandle', 'stdout' gracefully terminates on a broken output pipe. Note: For best performance, it might be best just to use @(for source (liftIO . putStr))@ instead of @(source >-> stdout)@ . -} stdout :: MonadIO m => Consumer' Text m () stdout = go where go = do txt <- await x <- liftIO $ try (T.putStr txt) case x of Left (G.IOError { G.ioe_type = G.ResourceVanished , G.ioe_errno = Just ioe }) | Errno ioe == ePIPE -> return () Left e -> liftIO (throwIO e) Right () -> go {-# INLINABLE stdout #-} {-| Convert a text stream into a 'Handle' Note: again, for best performance, where possible use @(for source (liftIO . hPutStr handle))@ instead of @(source >-> toHandle handle)@. -} toHandle :: MonadIO m => IO.Handle -> Consumer' Text m r toHandle h = for cat (liftIO . T.hPutStr h) {-# INLINABLE toHandle #-} {-# RULES "p >-> toHandle h" forall p h . p >-> toHandle h = for p (\txt -> liftIO (T.hPutStr h txt)) #-} -- | Stream text into a file. Uses @pipes-safe@. writeFile :: (MonadSafe m) => FilePath -> Consumer' Text m () writeFile file = Safe.withFile file IO.WriteMode toHandle {-# INLINE writeFile #-} type Lens' a b = forall f . Functor f => (b -> f b) -> (a -> f a) type Iso' a b = forall f p . (Functor f, Profunctor p) => p b (f b) -> p a (f a) (^.) :: a -> ((b -> Constant b b) -> (a -> Constant b a)) -> b a ^. lens = getConstant (lens Constant a) -- | Apply a transformation to each 'Char' in the stream map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r map f = P.map (T.map f) {-# INLINABLE map #-} {-# RULES "p >-> map f" forall p f . p >-> map f = for p (\txt -> yield (T.map f txt)) #-} -- | Map a function over the characters of a text stream and concatenate the results concatMap :: (Monad m) => (Char -> Text) -> Pipe Text Text m r concatMap f = P.map (T.concatMap f) {-# INLINABLE concatMap #-} {-# RULES "p >-> concatMap f" forall p f . p >-> concatMap f = for p (\txt -> yield (T.concatMap f txt)) #-} -- | Transform a Pipe of 'Text' into a Pipe of 'ByteString's using UTF-8 -- encoding; @encodeUtf8 = Pipes.Prelude.map TE.encodeUtf8@ so more complex -- encoding pipes can easily be constructed with the functions in @Data.Text.Encoding@ encodeUtf8 :: Monad m => Pipe Text ByteString m r encodeUtf8 = P.map TE.encodeUtf8 {-# INLINEABLE encodeUtf8 #-} {-# RULES "p >-> encodeUtf8" forall p . p >-> encodeUtf8 = for p (\txt -> yield (TE.encodeUtf8 txt)) #-} -- | Transform a Pipe of 'String's into one of 'Text' chunks pack :: Monad m => Pipe String Text m r pack = P.map T.pack {-# INLINEABLE pack #-} {-# RULES "p >-> pack" forall p . p >-> pack = for p (\txt -> yield (T.pack txt)) #-} -- | Transform a Pipes of 'Text' chunks into one of 'String's unpack :: Monad m => Pipe Text String m r unpack = for cat (\t -> yield (T.unpack t)) {-# INLINEABLE unpack #-} {-# RULES "p >-> unpack" forall p . p >-> unpack = for p (\txt -> yield (T.unpack txt)) #-} -- | @toCaseFold@, @toLower@, @toUpper@ and @stripStart@ are standard 'Text' utilities, -- here acting as 'Text' pipes, rather as they would on a lazy text toCaseFold :: Monad m => Pipe Text Text m () toCaseFold = P.map T.toCaseFold {-# INLINEABLE toCaseFold #-} {-# RULES "p >-> toCaseFold" forall p . p >-> toCaseFold = for p (\txt -> yield (T.toCaseFold txt)) #-} -- | lowercase incoming 'Text' toLower :: Monad m => Pipe Text Text m () toLower = P.map T.toLower {-# INLINEABLE toLower #-} {-# RULES "p >-> toLower" forall p . p >-> toLower = for p (\txt -> yield (T.toLower txt)) #-} -- | uppercase incoming 'Text' toUpper :: Monad m => Pipe Text Text m () toUpper = P.map T.toUpper {-# INLINEABLE toUpper #-} {-# RULES "p >-> toUpper" forall p . p >-> toUpper = for p (\txt -> yield (T.toUpper txt)) #-} -- | Remove leading white space from an incoming succession of 'Text's stripStart :: Monad m => Pipe Text Text m r stripStart = do chunk <- await let text = T.stripStart chunk if T.null text then stripStart else do yield text cat {-# INLINEABLE stripStart #-} -- | @(take n)@ only allows @n@ individual characters to pass; -- contrast @Pipes.Prelude.take@ which would let @n@ chunks pass. take :: (Monad m, Integral a) => a -> Pipe Text Text m () take n0 = go n0 where go n | n <= 0 = return () | otherwise = do txt <- await let len = fromIntegral (T.length txt) if (len > n) then yield (T.take (fromIntegral n) txt) else do yield txt go (n - len) {-# INLINABLE take #-} -- | @(drop n)@ drops the first @n@ characters drop :: (Monad m, Integral a) => a -> Pipe Text Text m r drop n0 = go n0 where go n | n <= 0 = cat | otherwise = do txt <- await let len = fromIntegral (T.length txt) if (len >= n) then do yield (T.drop (fromIntegral n) txt) cat else go (n - len) {-# INLINABLE drop #-} -- | Take characters until they fail the predicate takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m () takeWhile predicate = go where go = do txt <- await let (prefix, suffix) = T.span predicate txt if (T.null suffix) then do yield txt go else yield prefix {-# INLINABLE takeWhile #-} -- | Drop characters until they fail the predicate dropWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r dropWhile predicate = go where go = do txt <- await case T.findIndex (not . predicate) txt of Nothing -> go Just i -> do yield (T.drop i txt) cat {-# INLINABLE dropWhile #-} -- | Only allows 'Char's to pass if they satisfy the predicate filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r filter predicate = P.map (T.filter predicate) {-# INLINABLE filter #-} {-# RULES "p >-> filter q" forall p q . p >-> filter q = for p (\txt -> yield (T.filter q txt)) #-} -- | Strict left scan over the characters scan :: (Monad m) => (Char -> Char -> Char) -> Char -> Pipe Text Text m r scan step begin = go begin where go c = do txt <- await let txt' = T.scanl step c txt c' = T.last txt' yield txt' go c' {-# INLINABLE scan #-} {-| Fold a pure 'Producer' of strict 'Text's into a lazy 'TL.Text' -} toLazy :: Producer Text Identity () -> TL.Text toLazy = TL.fromChunks . P.toList {-# INLINABLE toLazy #-} {-| Fold an effectful 'Producer' of strict 'Text's into a lazy 'TL.Text' Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for simple testing purposes. Idiomatic @pipes@ style consumes the chunks immediately as they are generated instead of loading them all into memory. -} toLazyM :: (Monad m) => Producer Text m () -> m TL.Text toLazyM = liftM TL.fromChunks . P.toListM {-# INLINABLE toLazyM #-} -- | Reduce the text stream using a strict left fold over characters foldChars :: Monad m => (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r foldChars step begin done = P.fold (T.foldl' step) begin done {-# INLINABLE foldChars #-} -- | Retrieve the first 'Char' head :: (Monad m) => Producer Text m () -> m (Maybe Char) head = go where go p = do x <- nextChar p case x of Left _ -> return Nothing Right (c, _) -> return (Just c) {-# INLINABLE head #-} -- | Retrieve the last 'Char' last :: (Monad m) => Producer Text m () -> m (Maybe Char) last = go Nothing where go r p = do x <- next p case x of Left () -> return r Right (txt, p') -> if (T.null txt) then go r p' else go (Just $ T.last txt) p' {-# INLINABLE last #-} -- | Determine if the stream is empty null :: (Monad m) => Producer Text m () -> m Bool null = P.all T.null {-# INLINABLE null #-} -- | Count the number of characters in the stream length :: (Monad m, Num n) => Producer Text m () -> m n length = P.fold (\n txt -> n + fromIntegral (T.length txt)) 0 id {-# INLINABLE length #-} -- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool any predicate = P.any (T.any predicate) {-# INLINABLE any #-} -- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool all predicate = P.all (T.all predicate) {-# INLINABLE all #-} -- | Return the maximum 'Char' within a text stream maximum :: (Monad m) => Producer Text m () -> m (Maybe Char) maximum = P.fold step Nothing id where step mc txt = if (T.null txt) then mc else Just $ case mc of Nothing -> T.maximum txt Just c -> max c (T.maximum txt) {-# INLINABLE maximum #-} -- | Return the minimum 'Char' within a text stream (surely very useful!) minimum :: (Monad m) => Producer Text m () -> m (Maybe Char) minimum = P.fold step Nothing id where step mc txt = if (T.null txt) then mc else case mc of Nothing -> Just (T.minimum txt) Just c -> Just (min c (T.minimum txt)) {-# INLINABLE minimum #-} -- | Find the first element in the stream that matches the predicate find :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m (Maybe Char) find predicate p = head (p >-> filter predicate) {-# INLINABLE find #-} -- | Index into a text stream index :: (Monad m, Integral a) => a-> Producer Text m () -> m (Maybe Char) index n p = head (p >-> drop n) {-# INLINABLE index #-} -- | Store a tally of how many segments match the given 'Text' count :: (Monad m, Num n) => Text -> Producer Text m () -> m n count c p = P.fold (+) 0 id (p >-> P.map (fromIntegral . T.count c)) {-# INLINABLE count #-} {-| Consume the first character from a stream of 'Text' 'next' either fails with a 'Left' if the 'Producer' has no more characters or succeeds with a 'Right' providing the next character and the remainder of the 'Producer'. -} nextChar :: (Monad m) => Producer Text m r -> m (Either r (Char, Producer Text m r)) nextChar = go where go p = do x <- next p case x of Left r -> return (Left r) Right (txt, p') -> case (T.uncons txt) of Nothing -> go p' Just (c, txt') -> return (Right (c, yield txt' >> p')) {-# INLINABLE nextChar #-} {-| Draw one 'Char' from a stream of 'Text', returning 'Left' if the 'Producer' is empty -} drawChar :: (Monad m) => Parser Text m (Maybe Char) drawChar = do x <- PP.draw case x of Nothing -> return Nothing Just txt -> case (T.uncons txt) of Nothing -> drawChar Just (c, txt') -> do PP.unDraw txt' return (Just c) {-# INLINABLE drawChar #-} -- | Push back a 'Char' onto the underlying 'Producer' unDrawChar :: (Monad m) => Char -> Parser Text m () unDrawChar c = modify (yield (T.singleton c) >>) {-# INLINABLE unDrawChar #-} {-| 'peekChar' checks the first 'Char' in the stream, but uses 'unDrawChar' to push the 'Char' back > peekChar = do > x <- drawChar > case x of > Left _ -> return () > Right c -> unDrawChar c > return x -} peekChar :: (Monad m) => Parser Text m (Maybe Char) peekChar = do x <- drawChar case x of Nothing -> return () Just c -> unDrawChar c return x {-# INLINABLE peekChar #-} {-| Check if the underlying 'Producer' has no more characters Note that this will skip over empty 'Text' chunks, unlike 'PP.isEndOfInput' from @pipes-parse@, which would consider an empty 'Text' a valid bit of input. > isEndOfChars = liftM isLeft peekChar -} isEndOfChars :: (Monad m) => Parser Text m Bool isEndOfChars = do x <- peekChar return (case x of Nothing -> True Just _-> False ) {-# INLINABLE isEndOfChars #-} {- | An improper lens into a stream of 'ByteString' expected to be UTF-8 encoded; the associated stream of Text ends by returning a stream of ByteStrings beginning at the point of failure. -} decodeUtf8 :: Monad m => Lens' (Producer ByteString m r) (Producer Text m (Producer ByteString m r)) decodeUtf8 k p0 = fmap (\p -> join (for p (yield . TE.encodeUtf8))) (k (go B.empty PI.streamDecodeUtf8 p0)) where go !carry dec0 p = do x <- lift (next p) case x of Left r -> return (if B.null carry then return r -- all bytestring input was consumed else (do yield carry -- a potentially valid fragment remains return r)) Right (chunk, p') -> case dec0 chunk of PI.Some text carry2 dec -> do yield text go carry2 dec p' PI.Other text bs -> do yield text return (do yield bs -- an invalid blob remains p') {-# INLINABLE decodeUtf8 #-} -- | Splits a 'Producer' after the given number of characters splitAt :: (Monad m, Integral n) => n -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) splitAt n0 k p0 = fmap join (k (go n0 p0)) where go 0 p = return p go n p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> do let len = fromIntegral (T.length txt) if (len <= n) then do yield txt go (n - len) p' else do let (prefix, suffix) = T.splitAt (fromIntegral n) txt yield prefix return (yield suffix >> p') {-# INLINABLE splitAt #-} {-| Split a text stream in two, where the first text stream is the longest consecutive group of text that satisfy the predicate -} span :: (Monad m) => (Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) span predicate k p0 = fmap join (k (go p0)) where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> do let (prefix, suffix) = T.span predicate txt if (T.null suffix) then do yield txt go p' else do yield prefix return (yield suffix >> p') {-# INLINABLE span #-} {-| Split a text stream in two, where the first text stream is the longest consecutive group of characters that don't satisfy the predicate -} break :: (Monad m) => (Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) break predicate = span (not . predicate) {-# INLINABLE break #-} {-| Improper lens that splits after the first group of equivalent Chars, as defined by the given equivalence relation -} groupBy :: (Monad m) => (Char -> Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) groupBy equals k p0 = fmap join (k ((go p0))) where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> case T.uncons txt of Nothing -> go p' Just (c, _) -> (yield txt >> p') ^. span (equals c) {-# INLINABLE groupBy #-} -- | Improper lens that splits after the first succession of identical 'Char' s group :: Monad m => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) group = groupBy (==) {-# INLINABLE group #-} {-| Improper lens that splits a 'Producer' after the first word Unlike 'words', this does not drop leading whitespace -} word :: (Monad m) => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) word k p0 = fmap join (k (to p0)) where to p = do p' <- p^.span isSpace p'^.break isSpace {-# INLINABLE word #-} line :: (Monad m) => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) line = break (== '\n') {-# INLINABLE line #-} -- | Intersperse a 'Char' in between the characters of stream of 'Text' intersperse :: (Monad m) => Char -> Producer Text m r -> Producer Text m r intersperse c = go0 where go0 p = do x <- lift (next p) case x of Left r -> return r Right (txt, p') -> do yield (T.intersperse c txt) go1 p' go1 p = do x <- lift (next p) case x of Left r -> return r Right (txt, p') -> do yield (T.singleton c) yield (T.intersperse c txt) go1 p' {-# INLINABLE intersperse #-} -- | Improper isomorphism between a 'Producer' of 'ByteString's and 'Word8's packChars :: Monad m => Iso' (Producer Char m x) (Producer Text m x) packChars = Data.Profunctor.dimap to (fmap from) where -- to :: Monad m => Producer Char m x -> Producer Text m x to p = PG.folds step id done (p^.PG.chunksOf defaultChunkSize) step diffAs c = diffAs . (c:) done diffAs = T.pack (diffAs []) -- from :: Monad m => Producer Text m x -> Producer Char m x from p = for p (each . T.unpack) {-# INLINABLE packChars #-} -- | Split a text stream into 'FreeT'-delimited text streams of fixed size chunksOf :: (Monad m, Integral n) => n -> Lens' (Producer Text m r) (FreeT (Producer Text m) m r) chunksOf n k p0 = fmap concats (k (FreeT (go p0))) where go p = do x <- next p return $ case x of Left r -> Pure r Right (txt, p') -> Free $ do p'' <- (yield txt >> p') ^. splitAt n return $ FreeT (go p'') {-# INLINABLE chunksOf #-} {-| Split a text stream into sub-streams delimited by characters that satisfy the predicate -} splitsWith :: (Monad m) => (Char -> Bool) -> Producer Text m r -> FreeT (Producer Text m) m r splitsWith predicate p0 = FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (Pure r) Right (txt, p') -> if (T.null txt) then go0 p' else return $ Free $ do p'' <- (yield txt >> p') ^. span (not . predicate) return $ FreeT (go1 p'') go1 p = do x <- nextChar p return $ case x of Left r -> Pure r Right (_, p') -> Free $ do p'' <- p' ^. span (not . predicate) return $ FreeT (go1 p'') {-# INLINABLE splitsWith #-} -- | Split a text stream using the given 'Char' as the delimiter splits :: (Monad m) => Char -> Lens' (Producer Text m r) (FreeT (Producer Text m) m r) splits c k p = fmap (PG.intercalates (yield (T.singleton c))) (k (splitsWith (c ==) p)) {-# INLINABLE splits #-} {-| Isomorphism between a stream of 'Text' and groups of equivalent 'Char's , using the given equivalence relation -} groupsBy :: Monad m => (Char -> Char -> Bool) -> Lens' (Producer Text m x) (FreeT (Producer Text m) m x) groupsBy equals k p0 = fmap concats (k (FreeT (go p0))) where go p = do x <- next p case x of Left r -> return (Pure r) Right (bs, p') -> case T.uncons bs of Nothing -> go p' Just (c, _) -> do return $ Free $ do p'' <- (yield bs >> p')^.span (equals c) return $ FreeT (go p'') {-# INLINABLE groupsBy #-} -- | Like 'groupsBy', where the equality predicate is ('==') groups :: Monad m => Lens' (Producer Text m x) (FreeT (Producer Text m) m x) groups = groupsBy (==) {-# INLINABLE groups #-} {-| Split a text stream into 'FreeT'-delimited lines -} lines :: (Monad m) => Iso' (Producer Text m r) (FreeT (Producer Text m) m r) lines = Data.Profunctor.dimap _lines (fmap _unlines) where _lines p0 = FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (Pure r) Right (txt, p') -> if (T.null txt) then go0 p' else return $ Free $ go1 (yield txt >> p') go1 p = do p' <- p ^. break ('\n' ==) return $ FreeT $ do x <- nextChar p' case x of Left r -> return $ Pure r Right (_, p'') -> go0 p'' -- _unlines -- :: Monad m -- => FreeT (Producer Text m) m x -> Producer Text m x _unlines = concats . PG.maps (<* yield (T.singleton '\n')) {-# INLINABLE lines #-} -- | Split a text stream into 'FreeT'-delimited words words :: (Monad m) => Iso' (Producer Text m r) (FreeT (Producer Text m) m r) words = Data.Profunctor.dimap go (fmap _unwords) where go p = FreeT $ do x <- next (p >-> dropWhile isSpace) return $ case x of Left r -> Pure r Right (bs, p') -> Free $ do p'' <- (yield bs >> p') ^. break isSpace return (go p'') _unwords = PG.intercalates (yield $ T.singleton ' ') {-# INLINABLE words #-} {-| 'intercalate' concatenates the 'FreeT'-delimited text streams after interspersing a text stream in between them -} intercalate :: (Monad m) => Producer Text m () -> FreeT (Producer Text m) m r -> Producer Text m r intercalate p0 = go0 where go0 f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do f' <- p go1 f' go1 f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do p0 f' <- p go1 f' {-# INLINABLE intercalate #-} {-| Join 'FreeT'-delimited lines into a text stream -} unlines :: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r unlines = go where go f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do f' <- p yield $ T.singleton '\n' go f' {-# INLINABLE unlines #-} {-| Join 'FreeT'-delimited words into a text stream -} unwords :: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r unwords = intercalate (yield $ T.singleton ' ') {-# INLINABLE unwords #-} {- $parse The following parsing utilities are single-character analogs of the ones found @pipes-parse@. -} {- $reexports @Data.Text@ re-exports the 'Text' type. @Pipes.Parse@ re-exports 'input', 'concat', 'FreeT' (the type) and the 'Parse' synonym. -} {- | Use a 'Codec' as a pipes-style 'Lens' into a byte stream; the available 'Codec' s are 'utf8', 'utf16_le', 'utf16_be', 'utf32_le', 'utf32_be' . The 'Codec' concept and the individual 'Codec' definitions follow the enumerator and conduit libraries. Utf8 is handled differently in this library -- without the use of 'unsafePerformIO' &co to catch 'Text' exceptions; but the same 'mypipe ^. codec utf8' interface can be used. 'mypipe ^. decodeUtf8' should be the same, but has a somewhat more direct and thus perhaps better implementation. -} codec :: Monad m => Codec -> Lens' (Producer ByteString m r) (Producer Text m (Producer ByteString m r)) codec (Codec _ enc dec) k p0 = fmap (\p -> join (for p (yield . fst . enc))) (k (decoder (dec B.empty) p0) ) where decoder :: Monad m => PI.Decoding -> Producer ByteString m r -> Producer Text m (Producer ByteString m r) decoder !d p0 = case d of PI.Other txt bad -> do yield txt return (do yield bad p0) PI.Some txt extra dec -> do yield txt x <- lift (next p0) case x of Left r -> return (do yield extra return r) Right (chunk,p1) -> decoder (dec chunk) p1 {- | ascii and latin encodings only represent a small fragment of 'Text'; thus we cannot use the pipes 'Lens' style to work with them. Rather we simply define functions each way. 'encodeAscii' : Reduce as much of your stream of 'Text' actually is ascii to a byte stream, returning the rest of the 'Text' at the first non-ascii 'Char' -} encodeAscii :: Monad m => Producer Text m r -> Producer ByteString m (Producer Text m r) encodeAscii = go where go p = do echunk <- lift (next p) case echunk of Left r -> return (return r) Right (chunk, p') -> if T.null chunk then go p' else let (safe, unsafe) = T.span (\c -> ord c <= 0x7F) chunk in do yield (B8.pack (T.unpack safe)) if T.null unsafe then go p' else return $ do yield unsafe p' {- | Reduce as much of your stream of 'Text' actually is iso8859 or latin1 to a byte stream, returning the rest of the 'Text' upon hitting any non-latin 'Char' -} encodeIso8859_1 :: Monad m => Producer Text m r -> Producer ByteString m (Producer Text m r) encodeIso8859_1 = go where go p = do etxt <- lift (next p) case etxt of Left r -> return (return r) Right (txt, p') -> if T.null txt then go p' else let (safe, unsafe) = T.span (\c -> ord c <= 0xFF) txt in do yield (B8.pack (T.unpack safe)) if T.null unsafe then go p' else return $ do yield unsafe p' {- | Reduce a byte stream to a corresponding stream of ascii chars, returning the unused 'ByteString' upon hitting an un-ascii byte. -} decodeAscii :: Monad m => Producer ByteString m r -> Producer Text m (Producer ByteString m r) decodeAscii = go where go p = do echunk <- lift (next p) case echunk of Left r -> return (return r) Right (chunk, p') -> if B.null chunk then go p' else let (safe, unsafe) = B.span (<= 0x7F) chunk in do yield (T.pack (B8.unpack safe)) if B.null unsafe then go p' else return $ do yield unsafe p' {- | Reduce a byte stream to a corresponding stream of ascii chars, returning the unused 'ByteString' upon hitting the rare un-latinizable byte. -} decodeIso8859_1 :: Monad m => Producer ByteString m r -> Producer Text m (Producer ByteString m r) decodeIso8859_1 = go where go p = do echunk <- lift (next p) case echunk of Left r -> return (return r) Right (chunk, p') -> if B.null chunk then go p' else let (safe, unsafe) = B.span (<= 0xFF) chunk in do yield (T.pack (B8.unpack safe)) if B.null unsafe then go p' else return $ do yield unsafe p'