{-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} -- | The module @Pipes.Text@ closely follows @Pipes.ByteString@ from -- the @pipes-bytestring@ package. A draft tutorial can be found in -- @Pipes.Text.Tutorial@. module Pipes.Text ( -- * Producers fromLazy, -- * Pipes map, concatMap, take, takeWhile, filter, toCaseFold, toLower, toUpper, stripStart, scan, -- * Folds toLazy, toLazyM, foldChars, head, last, null, length, any, all, maximum, minimum, find, index, -- * Primitive Character Parsers nextChar, drawChar, unDrawChar, peekChar, isEndOfChars, -- * Parsing Lenses splitAt, span, break, groupBy, group, word, line, -- * Transforming Text and Character Streams drop, dropWhile, pack, unpack, intersperse, -- * FreeT Transformations chunksOf, splitsWith, splits, groupsBy, groups, lines, unlines, words, unwords, intercalate, -- * Re-exports -- $reexports module Data.ByteString, module Data.Text, module Pipes.Parse, module Pipes.Group, ) where import Control.Monad (join) import Control.Monad.Trans.State.Strict (modify) import Data.Bits (shiftL) import Data.ByteString (ByteString) import Data.Char (isSpace) import Data.Foldable (traverse_) import Data.Functor.Constant (Constant (..)) import Data.Functor.Identity (Identity) import Data.Text (Text) import qualified Data.Text as T import qualified Data.Text.Lazy as TL import Foreign.Storable (sizeOf) import Pipes import Pipes.Group (FreeF (..), FreeT (..), concats, folds, intercalates, maps) import qualified Pipes.Group as PG import Pipes.Parse (Parser) import qualified Pipes.Parse as PP import qualified Pipes.Prelude as P import Prelude hiding ( all, any, break, concat, concatMap, drop, dropWhile, elem, filter, head, last, length, lines, map, maximum, minimum, notElem, null, readFile, span, splitAt, take, takeWhile, unlines, unwords, words, writeFile, ) -- $setup -- >>> :set -XOverloadedStrings -- >>> import Data.Text (Text) -- >>> import qualified Data.Text as T -- >>> import qualified Data.Text.Lazy.IO as TL -- >>> import Data.Char -- | Convert a lazy 'TL.Text' into a 'Producer' of strict 'Text's. Producers in -- IO can be found in 'Pipes.Text.IO' or in pipes-bytestring, employed with the -- decoding lenses in 'Pipes.Text.Encoding' fromLazy :: (Monad m) => TL.Text -> Producer' Text m () fromLazy str = TL.foldrChunks (\e a -> yield e >> a) (return ()) str {-# INLINE fromLazy #-} (^.) :: a -> ((b -> Constant b b) -> (a -> Constant b a)) -> b a ^. lens = getConstant (lens Constant a) -- | Apply a transformation to each 'Char' in the stream -- >>> let margaret = ["Margaret, are you grieving\nOver Golde","ngrove unleaving?":: Text] -- >>> TL.putStrLn . toLazy $ each margaret >-> map Data.Char.toUpper -- MARGARET, ARE YOU GRIEVING -- OVER GOLDENGROVE UNLEAVING? map :: (Monad m) => (Char -> Char) -> Pipe Text Text m r map f = P.map (T.map f) {-# INLINEABLE map #-} -- | Map a function over the characters of a text stream and concatenate the results concatMap :: (Monad m) => (Char -> Text) -> Pipe Text Text m r concatMap f = P.map (T.concatMap f) {-# INLINEABLE concatMap #-} -- | @(take n)@ only allows @n@ individual characters to pass; -- contrast @Pipes.Prelude.take@ which would let @n@ chunks pass. take :: (Monad m, Integral a) => a -> Pipe Text Text m () take = go where go n | n <= 0 = return () | otherwise = do txt <- await let len = fromIntegral (T.length txt) if len > n then yield (T.take (fromIntegral n) txt) else do yield txt go (n - len) {-# INLINEABLE take #-} -- | Take characters until they fail the predicate takeWhile :: (Monad m) => (Char -> Bool) -> Pipe Text Text m () takeWhile predicate = go where go = do txt <- await let (prefix, suffix) = T.span predicate txt if T.null suffix then do yield txt go else yield prefix {-# INLINEABLE takeWhile #-} -- | Only allows 'Char's to pass if they satisfy the predicate filter :: (Monad m) => (Char -> Bool) -> Pipe Text Text m r filter predicate = P.map (T.filter predicate) {-# INLINEABLE filter #-} -- | Strict left scan over the characters -- >>> let margaret = ["Margaret, are you grieving\nOver Golde","ngrove unleaving?":: Text] -- >>> let title_caser a x = case a of ' ' -> Data.Char.toUpper x; _ -> x -- >>> toLazy $ each margaret >-> scan title_caser ' ' -- " Margaret, Are You Grieving\nOver Goldengrove Unleaving?" scan :: (Monad m) => (Char -> Char -> Char) -> Char -> Pipe Text Text m r scan step begin = do yield (T.singleton begin) go begin where go c = do txt <- await let txt' = T.scanl step c txt c' = T.last txt' yield (T.tail txt') go c' {-# INLINEABLE scan #-} -- | @toCaseFold@, @toLower@, @toUpper@ and @stripStart@ are standard 'Text' utilities, -- here acting as 'Text' pipes, rather as they would on a lazy text toCaseFold :: Monad m => Pipe Text Text m r toCaseFold = P.map T.toCaseFold {-# INLINEABLE toCaseFold #-} -- | lowercase incoming 'Text' toLower :: Monad m => Pipe Text Text m r toLower = P.map T.toLower {-# INLINEABLE toLower #-} -- | uppercase incoming 'Text' toUpper :: Monad m => Pipe Text Text m r toUpper = P.map T.toUpper {-# INLINEABLE toUpper #-} -- | Remove leading white space from an incoming succession of 'Text's stripStart :: Monad m => Pipe Text Text m r stripStart = do chunk <- await let text = T.stripStart chunk if T.null text then stripStart else do yield text cat {-# INLINEABLE stripStart #-} -- | Fold a pure 'Producer' of strict 'Text's into a lazy -- 'TL.Text' toLazy :: Producer Text Identity () -> TL.Text toLazy = TL.fromChunks . P.toList {-# INLINEABLE toLazy #-} -- | Fold an effectful 'Producer' of strict 'Text's into a lazy -- 'TL.Text' -- -- Note: 'toLazyM' is not an idiomatic use of @pipes@, but I provide it for -- simple testing purposes. Idiomatic @pipes@ style consumes the chunks -- immediately as they are generated instead of loading them all into memory. toLazyM :: (Monad m) => Producer Text m () -> m TL.Text toLazyM = fmap TL.fromChunks . P.toListM {-# INLINEABLE toLazyM #-} -- | Reduce the text stream using a strict left fold over characters foldChars :: Monad m => (x -> Char -> x) -> x -> (x -> r) -> Producer Text m () -> m r foldChars step = P.fold (T.foldl' step) {-# INLINEABLE foldChars #-} -- | Retrieve the first 'Char' head :: (Monad m) => Producer Text m () -> m (Maybe Char) head = go where go p = do x <- nextChar p case x of Left _ -> return Nothing Right (c, _) -> return (Just c) {-# INLINEABLE head #-} -- | Retrieve the last 'Char' last :: (Monad m) => Producer Text m () -> m (Maybe Char) last = go Nothing where go r p = do x <- next p case x of Left () -> return r Right (txt, p') -> if T.null txt then go r p' else go (Just $ T.last txt) p' {-# INLINEABLE last #-} -- | Determine if the stream is empty null :: (Monad m) => Producer Text m () -> m Bool null = P.all T.null {-# INLINEABLE null #-} -- | Count the number of characters in the stream length :: (Monad m, Num n) => Producer Text m () -> m n length = P.fold (\n txt -> n + fromIntegral (T.length txt)) 0 id {-# INLINEABLE length #-} -- | Fold that returns whether 'M.Any' received 'Char's satisfy the predicate any :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool any predicate = P.any (T.any predicate) {-# INLINEABLE any #-} -- | Fold that returns whether 'M.All' received 'Char's satisfy the predicate all :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m Bool all predicate = P.all (T.all predicate) {-# INLINEABLE all #-} -- | Return the maximum 'Char' within a text stream maximum :: (Monad m) => Producer Text m () -> m (Maybe Char) maximum = P.fold step Nothing id where step mc txt = if T.null txt then mc else Just $ case mc of Nothing -> T.maximum txt Just c -> max c (T.maximum txt) {-# INLINEABLE maximum #-} -- | Return the minimum 'Char' within a text stream (surely very useful!) minimum :: (Monad m) => Producer Text m () -> m (Maybe Char) minimum = P.fold step Nothing id where step mc txt = if T.null txt then mc else case mc of Nothing -> Just (T.minimum txt) Just c -> Just (min c (T.minimum txt)) {-# INLINEABLE minimum #-} -- | Find the first element in the stream that matches the predicate find :: (Monad m) => (Char -> Bool) -> Producer Text m () -> m (Maybe Char) find predicate p = head (p >-> filter predicate) {-# INLINEABLE find #-} -- | Index into a text stream index :: (Monad m, Integral a) => a -> Producer Text m () -> m (Maybe Char) index n p = head (drop n p) {-# INLINEABLE index #-} -- | Consume the first character from a stream of 'Text' -- -- 'next' either fails with a 'Left' if the 'Producer' has no more characters or -- succeeds with a 'Right' providing the next character and the remainder of the -- 'Producer'. nextChar :: (Monad m) => Producer Text m r -> m (Either r (Char, Producer Text m r)) nextChar = go where go p = do x <- next p case x of Left r -> return (Left r) Right (txt, p') -> case T.uncons txt of Nothing -> go p' Just (c, txt') -> return (Right (c, yield txt' >> p')) {-# INLINEABLE nextChar #-} -- | Draw one 'Char' from a stream of 'Text', returning 'Left' if the 'Producer' is empty drawChar :: (Monad m) => Parser Text m (Maybe Char) drawChar = do x <- PP.draw case x of Nothing -> return Nothing Just txt -> case T.uncons txt of Nothing -> drawChar Just (c, txt') -> do PP.unDraw txt' return (Just c) {-# INLINEABLE drawChar #-} -- | Push back a 'Char' onto the underlying 'Producer' unDrawChar :: (Monad m) => Char -> Parser Text m () unDrawChar c = modify (yield (T.singleton c) >>) {-# INLINEABLE unDrawChar #-} -- | 'peekChar' checks the first 'Char' in the stream, but uses 'unDrawChar' to -- push the 'Char' back -- -- > peekChar = do -- > x <- drawChar -- > case x of -- > Left _ -> return () -- > Right c -> unDrawChar c -- > return x peekChar :: (Monad m) => Parser Text m (Maybe Char) peekChar = do x <- drawChar traverse_ (\h -> unDrawChar h) x return x {-# INLINEABLE peekChar #-} -- | Check if the underlying 'Producer' has no more characters -- -- Note that this will skip over empty 'Text' chunks, unlike -- 'PP.isEndOfInput' from @pipes-parse@, which would consider -- an empty 'Text' a valid bit of input. -- -- > isEndOfChars = liftM isLeft peekChar isEndOfChars :: (Monad m) => Parser Text m Bool isEndOfChars = do x <- peekChar return ( case x of Nothing -> True Just _ -> False ) {-# INLINEABLE isEndOfChars #-} -- | Splits a 'Producer' after the given number of characters splitAt :: (Monad m, Integral n) => n -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) splitAt n0 k p0 = fmap join (k (go n0 p0)) where go 0 p = return p go n p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> do let len = fromIntegral (T.length txt) if len <= n then do yield txt go (n - len) p' else do let (prefix, suffix) = T.splitAt (fromIntegral n) txt yield prefix return (yield suffix >> p') {-# INLINEABLE splitAt #-} -- | Split a text stream in two, producing the longest -- consecutive group of characters that satisfies the predicate -- and returning the rest span :: (Monad m) => (Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) span predicate k p0 = fmap join (k (go p0)) where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> do let (prefix, suffix) = T.span predicate txt if T.null suffix then do yield txt go p' else do yield prefix return (yield suffix >> p') {-# INLINEABLE span #-} -- | Split a text stream in two, producing the longest -- consecutive group of characters that don't satisfy the predicate break :: (Monad m) => (Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) break predicate = span (not . predicate) {-# INLINEABLE break #-} -- | Improper lens that splits after the first group of equivalent Chars, as -- defined by the given equivalence relation groupBy :: (Monad m) => (Char -> Char -> Bool) -> Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) groupBy equals k p0 = fmap join (k (go p0)) where go p = do x <- lift (next p) case x of Left r -> return (return r) Right (txt, p') -> case T.uncons txt of Nothing -> go p' Just (c, _) -> (yield txt >> p') ^. span (equals c) {-# INLINEABLE groupBy #-} -- | Improper lens that splits after the first succession of identical 'Char' s group :: Monad m => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) group = groupBy (==) {-# INLINEABLE group #-} -- | Improper lens that splits a 'Producer' after the first word -- -- Unlike 'words', this does not drop leading whitespace word :: (Monad m) => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) word k p0 = fmap join (k (to p0)) where to p = do p' <- p ^. span isSpace p' ^. break isSpace {-# INLINEABLE word #-} line :: (Monad m) => Lens' (Producer Text m r) (Producer Text m (Producer Text m r)) line = break (== '\n') {-# INLINEABLE line #-} -- | @(drop n)@ drops the first @n@ characters drop :: (Monad m, Integral n) => n -> Producer Text m r -> Producer Text m r drop n p = join (lift $ runEffect (for (p ^. splitAt n) discard)) {-# INLINEABLE drop #-} -- | Drop characters until they fail the predicate dropWhile :: (Monad m) => (Char -> Bool) -> Producer Text m r -> Producer Text m r dropWhile predicate p = join (lift $ runEffect (for (p ^. span predicate) discard)) {-# INLINEABLE dropWhile #-} -- | Intersperse a 'Char' in between the characters of stream of 'Text' intersperse :: (Monad m) => Char -> Producer Text m r -> Producer Text m r intersperse c = go0 where go0 p = do x <- lift (next p) case x of Left r -> return r Right (txt, p') -> do yield (T.intersperse c txt) go1 p' go1 p = do x <- lift (next p) case x of Left r -> return r Right (txt, p') -> do yield (T.singleton c) yield (T.intersperse c txt) go1 p' {-# INLINEABLE intersperse #-} -- | Improper lens from unpacked 'Word8's to packaged 'ByteString's pack :: Monad m => Lens' (Producer Char m r) (Producer Text m r) pack k p = fmap _unpack (k (_pack p)) {-# INLINEABLE pack #-} -- | Improper lens from packed 'ByteString's to unpacked 'Word8's unpack :: Monad m => Lens' (Producer Text m r) (Producer Char m r) unpack k p = fmap _pack (k (_unpack p)) {-# INLINEABLE unpack #-} _pack :: Monad m => Producer Char m r -> Producer Text m r _pack p = folds step id done (p ^. PG.chunksOf defaultChunkSize) where step diffAs w8 = diffAs . (w8 :) done diffAs = T.pack (diffAs []) {-# INLINEABLE _pack #-} _unpack :: Monad m => Producer Text m r -> Producer Char m r _unpack p = for p (each . T.unpack) {-# INLINEABLE _unpack #-} defaultChunkSize :: Int defaultChunkSize = 16384 - (sizeOf (undefined :: Int) `shiftL` 1) -- | Split a text stream into 'FreeT'-delimited text streams of fixed size chunksOf :: (Monad m, Integral n) => n -> Lens' (Producer Text m r) (FreeT (Producer Text m) m r) chunksOf n k p0 = fmap concats (k (FreeT (go p0))) where go p = do x <- next p return $ case x of Left r -> Pure r Right (txt, p') -> Free $ do p'' <- (yield txt >> p') ^. splitAt n return $ FreeT (go p'') {-# INLINEABLE chunksOf #-} -- | Split a text stream into sub-streams delimited by characters that satisfy the -- predicate splitsWith :: (Monad m) => (Char -> Bool) -> Producer Text m r -> FreeT (Producer Text m) m r splitsWith predicate p0 = FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (Pure r) Right (txt, p') -> if T.null txt then go0 p' else return $ Free $ do p'' <- (yield txt >> p') ^. span (not . predicate) return $ FreeT (go1 p'') go1 p = do x <- nextChar p return $ case x of Left r -> Pure r Right (_, p') -> Free $ do p'' <- p' ^. span (not . predicate) return $ FreeT (go1 p'') {-# INLINEABLE splitsWith #-} -- | Split a text stream using the given 'Char' as the delimiter splits :: (Monad m) => Char -> Lens' (Producer Text m r) (FreeT (Producer Text m) m r) splits c k p = fmap (intercalates (yield (T.singleton c))) (k (splitsWith (c ==) p)) {-# INLINEABLE splits #-} -- | Isomorphism between a stream of 'Text' and groups of equivalent 'Char's , using the -- given equivalence relation groupsBy :: Monad m => (Char -> Char -> Bool) -> Lens' (Producer Text m x) (FreeT (Producer Text m) m x) groupsBy equals k p0 = fmap concats (k (FreeT (go p0))) where go p = do x <- next p case x of Left r -> return (Pure r) Right (bs, p') -> case T.uncons bs of Nothing -> go p' Just (c, _) -> do return $ Free $ do p'' <- (yield bs >> p') ^. span (equals c) return $ FreeT (go p'') {-# INLINEABLE groupsBy #-} -- | Like 'groupsBy', where the equality predicate is ('==') groups :: Monad m => Lens' (Producer Text m x) (FreeT (Producer Text m) m x) groups = groupsBy (==) {-# INLINEABLE groups #-} -- | Split a text stream into 'FreeT'-delimited lines lines :: (Monad m) => Lens' (Producer Text m r) (FreeT (Producer Text m) m r) lines k p = fmap _unlines (k (_lines p)) {-# INLINEABLE lines #-} unlines :: Monad m => Lens' (FreeT (Producer Text m) m r) (Producer Text m r) unlines k p = fmap _lines (k (_unlines p)) {-# INLINEABLE unlines #-} _lines :: Monad m => Producer Text m r -> FreeT (Producer Text m) m r _lines p0 = FreeT (go0 p0) where go0 p = do x <- next p case x of Left r -> return (Pure r) Right (txt, p') -> if T.null txt then go0 p' else return $ Free $ go1 (yield txt >> p') go1 p = do p' <- p ^. break ('\n' ==) return $ FreeT $ do x <- nextChar p' case x of Left r -> return $ Pure r Right (_, p'') -> go0 p'' {-# INLINEABLE _lines #-} _unlines :: Monad m => FreeT (Producer Text m) m r -> Producer Text m r _unlines = concats . maps (<* yield (T.singleton '\n')) {-# INLINEABLE _unlines #-} -- | Split a text stream into 'FreeT'-delimited words. Note that -- roundtripping with e.g. @over words id@ eliminates extra space -- characters as with @Prelude.unwords . Prelude.words@ words :: (Monad m) => Lens' (Producer Text m r) (FreeT (Producer Text m) m r) words k p = fmap _unwords (k (_words p)) {-# INLINEABLE words #-} unwords :: Monad m => Lens' (FreeT (Producer Text m) m r) (Producer Text m r) unwords k p = fmap _words (k (_unwords p)) {-# INLINEABLE unwords #-} _words :: (Monad m) => Producer Text m r -> FreeT (Producer Text m) m r _words p = FreeT $ do x <- next (dropWhile isSpace p) return $ case x of Left r -> Pure r Right (bs, p') -> Free $ do p'' <- (yield bs >> p') ^. break isSpace return (_words p'') {-# INLINEABLE _words #-} _unwords :: (Monad m) => FreeT (Producer Text m) m r -> Producer Text m r _unwords = intercalates (yield $ T.singleton ' ') {-# INLINEABLE _unwords #-} -- | 'intercalate' concatenates the 'FreeT'-delimited text streams after -- interspersing a text stream in between them intercalate :: (Monad m) => Producer Text m () -> FreeT (Producer Text m) m r -> Producer Text m r intercalate p0 = go0 where go0 f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do f' <- p go1 f' go1 f = do x <- lift (runFreeT f) case x of Pure r -> return r Free p -> do p0 f' <- p go1 f' {-# INLINEABLE intercalate #-} -- $reexports -- -- @Data.Text@ re-exports the 'Text' type. -- -- @Pipes.Parse@ re-exports 'input', 'concat', 'FreeT' (the type) and the 'Parse' synonym. type Lens' a b = forall f. Functor f => (b -> f b) -> (a -> f a)