module Graphics.Rendering.Plot.Render.Plot.Data (
renderData
) where
import Data.List(partition)
import Numeric.LinearAlgebra
import qualified Data.Array.IArray as A
import qualified Data.Array.Base as B
import Data.Word
import qualified Graphics.Rendering.Cairo as C
import qualified Graphics.Rendering.Cairo.Matrix as CM
import Control.Monad.Reader
import Control.Monad.State
import Control.Monad.Maybe
import Graphics.Rendering.Plot.Types
import Graphics.Rendering.Plot.Render.Types
import Graphics.Rendering.Plot.Render.Plot.Format
import Graphics.Rendering.Plot.Render.Plot.Glyph
import Prelude hiding(min,max,abs)
import qualified Prelude
findMinIdx, findMaxIdx :: Vector Double -> Double -> Int -> Int -> Int
findMinIdx v x n max
| n >= max = error "findMinIdx: data not in range"
| v @> n >= x = n
| otherwise = findMinIdx v x (n+1) max
findMaxIdx v x n min
| n < 0 = error "findMaxIdx: data not in range"
| v @> n <= x = n
| otherwise = findMaxIdx v x (n1) min
greySurfaceFromMatrix :: C.SurfaceData Int Word8 -> Surface -> Int -> Int -> Int -> IO ()
greySurfaceFromMatrix s m stride r' c' = do
let r = rows m
c = cols m
let fm = flatten m
mx = maxElement m
mn = minElement m
mapM_ (\ri -> mapM_ (\(rj,ci) -> do
let mi = ((rj `div` r')*c) + (ci `div` c')
let e = round . (* 255) . (/ (mxmn)) . (\x -> x mn) $ (fm @> mi)
let si = (rj*stride) + ci
B.unsafeWrite s si e) $ zip (repeat ri) [0..((c*c')1)]) [0..((r*r')1)]
zeroToOne :: Double -> Double
zeroToOne x
| x == 0.0 = 1.0
| otherwise = x
renderData :: Ranges -> DataSeries -> Render ()
renderData _ (DS_Surf m) = do
(BoundingBox x y w h) <- get
let r = rows m
c = cols m
cairo $ do
C.save
let r'' = Prelude.min 4 ((round h) `div` r)
c'' = Prelude.min 4 ((round w) `div` c)
r' = if r'' < 1 then 1 else r''
c' = if c'' < 1 then 1 else c''
s <- liftIO $ C.createImageSurface C.FormatA8 (c*c') (r*r')
p <- liftIO $ C.imageSurfaceGetPixels s
C.surfaceFlush s
stride <- liftIO $ C.imageSurfaceGetStride s
liftIO $ greySurfaceFromMatrix p m stride r' c'
C.surfaceMarkDirty s
C.setSourceSurface s x y
pa <- C.getSource
pm <- liftIO $ C.patternGetMatrix pa
let pm' = CM.scale ((fromIntegral (c*c'))/w) ((fromIntegral (r*r'))/h) pm
liftIO $ C.patternSetMatrix pa pm'
C.rectangle x y w h
C.paint
C.stroke
C.restore
return ()
renderData r ds = do
let aos = case ds of
(DS_Y os') -> zip (repeat AbsFunction) (A.elems os')
(DS_1toN abs' os') -> zip (repeat abs') (A.elems os')
(DS_1to1 aos') -> A.elems aos'
_ -> error "renderData: DataSeries not handled"
let (los,ups) = partition (\(_,DecSeries o _) -> isLower o) aos
(BoundingBox x y w h) <- get
let (xsc,xmin',xmax') = getRanges XAxis Lower r
let (xmin,xmax) = if xsc == Log then (logBase 10 $ zeroToOne xmin',logBase 10 $ zeroToOne xmax') else (xmin',xmax')
let xscale = w/(xmaxxmin)
cairo $ C.save
let (yscl,yminl',ymaxl') = getRanges YAxis Lower r
let (yminl,ymaxl) = if yscl == Log then (logBase 10 $ zeroToOne yminl',logBase 10 $ zeroToOne ymaxl') else (yminl',ymaxl')
let yscalel = h/(ymaxlyminl)
cairo $ do
C.translate x (y+h)
C.translate (xmin*xscale) (yminl*yscalel)
flipVertical
mapM_ (renderSeries xsc yscl xmin xmax xscale yscalel) los
cairo $ C.restore
when (not $ null ups)
(do
cairo $ C.save
let (yscu,yminu',ymaxu') = getRanges YAxis Upper r
let (yminu,ymaxu) = if yscu == Log then (logBase 10 $ zeroToOne yminu',logBase 10 $ zeroToOne ymaxu') else (yminu',ymaxu')
let yscaleu = h/(ymaxuyminu)
cairo $ do
C.translate x (y+h)
C.translate (xmin*xscale) (yminu*yscaleu)
flipVertical
mapM_ (renderSeries xsc yscu xmin xmax xscale yscaleu) ups
cairo $ C.restore)
return ()
renderSeries :: Scale -> Scale
-> Double -> Double -> Double -> Double
-> (Abscissae,DecoratedSeries) -> Render ()
renderSeries xsc ysc xmin xmax xscale yscale (abs,(DecSeries o d)) = do
dat' <- case o of
(OrdFunction _ f _) -> do
(BoundingBox _ _ w _) <- get
let t = linspace (round w) (xmin,xmax)
return $ Left [((True,t),mapVector f t)]
(OrdPoints _ (Plain o') _) -> do
let t = case abs of
AbsFunction -> if isHist d
then (True,fromList [0.0..(fromIntegral $ dim o')])
else (True,fromList [1.0..(fromIntegral $ dim o')])
AbsPoints mi t' -> (mi,t')
return $ Left [(t,o')]
(OrdPoints _ (Error o' (l,h)) _) -> do
let t = case abs of
AbsFunction -> if isHist d
then (True,fromList [0.0..(fromIntegral $ dim o')])
else (True,fromList [1.0..(fromIntegral $ dim o')])
AbsPoints mi t' -> (mi,t')
return $ Left [(t,o'),(t,o'l),(t,o'+h)]
(OrdPoints _ (MinMax o' (Just (l,h))) _) -> do
let t = case abs of
AbsFunction -> (True,fromList [1.0..(fromIntegral $ dim l)])
AbsPoints mi t' -> (mi,t')
return $ Right [((t,o'),(t,(l,h)))]
let dat = case dat' of
Left dat'' → map (\((m,a),b) -> Left (if xsc == Log then (m,logBase 10 a) else (m,a)
,if ysc == Log then (logBase 10 b) else b)) dat''
Right dat''' -> map (\(((m1,a),(bl,bu)),((m2,c),(dl,du))) → let (a',c') = if xsc == Log then (logBase 10 $ mapVector zeroToOne a,logBase 10 $ mapVector zeroToOne c) else (a,c)
(bl',bu',dl',du') = if ysc == Log then (logBase 10 bl,logBase 10 bu,logBase 10 dl,logBase 10 du) else (bl,bu,dl,du)
in Right (((m1,a'),(bl',bu')),((m2,c'),(dl',du')))) dat'''
case d of
(DecLine lt) -> do
formatLineSeries lt
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing
renderLineSample endLineSample t' y') (map (either id (error "MinMax data")) dat)
(DecPoint pt) -> do
(pz,g) <- formatPointSeries pt
let gs = g : Bot : Top : []
mapM_ (\(g',(t',y')) -> renderSamples xscale yscale xmin xmax Nothing
(renderPointSample pz g') endPointSample t' y')
(zip gs (map (either id (error "MinMax data")) dat))
(DecLinPt lt pt) -> do
formatLineSeries lt
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing
renderLineSample endLineSample t' y') (map (either id (error "MinMax data")) dat)
(pz,g) <- formatPointSeries pt
let gs = g : Bot : Top : []
mapM_ (\(g',(t',y')) -> renderSamples xscale yscale xmin xmax Nothing
(renderPointSample pz g') endPointSample t' y')
(zip gs (map (either id (error "MinMax data")) dat))
(DecImpulse lt) -> do
formatLineSeries lt
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing
renderImpulseSample endImpulseSample t' y') (map (either id (error "MinMax data")) dat)
(DecStep lt) -> do
formatLineSeries lt
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing
renderStepSample endStepSample t' y') (map (either id (error "MinMax data")) dat)
(DecArea lt) -> do
formatLineSeries lt
let Left hd = head dat
ln = dim $ snd $ fst hd
xmin_ix = findMinIdx (snd $ fst hd) xmin 0 (ln1)
x0 = (snd $ fst hd) @> xmin_ix
y0 = (snd hd) @> xmin_ix
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing
renderAreaSample (endAreaSample x0 y0) t' y') (map (either id (error "MinMax data")) dat)
(DecBar bt) -> do
(bw,bc,c) <- formatBarSeries bt
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax Nothing
(renderBarSample bw bc c) endBarSample t' y') (map (either id (error "MinMax data")) dat)
(DecHist bt) -> do
(bw,bc,c) <- formatBarSeries bt
let Left hd = head dat
ln = dim $ snd $ fst hd
xmin_ix = findMinIdx (snd $ fst hd) xmin 0 (ln1)
rest (m,v) = (m,subVector 1 (dim v 1) v)
x0 = (snd $ fst hd) @> xmin_ix
y0 = 0
mapM_ (\(t',y') -> renderSamples xscale yscale xmin xmax (Just $ C.moveTo x0 y0)
(renderHistSample bw bc c) endHistSample (rest t') y') (map (either id (error "MinMax data")) dat)
(DecCand bt) → do
(bw,bc,c) ← formatBarSeries bt
mapM_ (\((t',y'),(_,e')) → do
renderMinMaxSamples xscale yscale xmin xmax Nothing
(renderWhiskerSample bw bc c False) endWhiskerSample t' e'
renderMinMaxSamples xscale yscale xmin xmax Nothing
(renderCandleSample bw bc c) endCandleSample t' y'
) (map (either (error "Single data") id) dat)
(DecWhisk bt) → do
(bw,bc,c) ← formatBarSeries bt
mapM_ (\((t',y'),(_,e')) → do
renderMinMaxSamples xscale yscale xmin xmax Nothing
(renderWhiskerSample bw bc c True) endWhiskerSample t' e'
renderMinMaxSamples xscale yscale xmin xmax Nothing
(renderCandleSample bw bc c) endCandleSample t' y'
) (map (either (error "Single data") id) dat)
return ()
renderSamples :: Double -> Double
-> Double -> Double
-> Maybe (C.Render ())
-> (Double -> Double -> Double -> Double -> C.Render ()) -> (Double -> Double -> C.Render ())
-> (Bool,Vector Double) -> Vector Double -> Render ()
renderSamples xscale yscale xmin xmax s f e (mono,t) y = do
(BoundingBox _ _ w _) <- get
let ln = dim t
(xmin_ix,xmax_ix,num_pts) = if mono
then (findMinIdx t xmin 0 (ln1)
,findMaxIdx t xmax (ln1) 0
,xmax_ix xmin_ix + 1)
else (0,ln1,ln)
diff'' = floor $ (fromIntegral num_pts)/w
diff' = if diff'' <= 1 then 1 else diff''
diff = if mono then diff' else 1
cairo $ do
case s of
Nothing -> C.moveTo ((t @> xmin_ix)*xscale) ((y @> xmin_ix)*yscale)
Just s' -> s'
_ <- runMaybeT $ do
mapVectorWithIndexM_ (\i y' -> do
when (i >= xmin_ix && i `mod` diff == 0)
(renderSample i xmax_ix t (f xscale yscale) y')
return ()) y
(e xscale yscale)
renderMinMaxSamples :: Double -> Double
-> Double -> Double
-> Maybe (C.Render ())
-> (Double -> Double -> Double -> (Double,Double) -> C.Render ()) -> (Double -> Double -> C.Render ())
-> (Bool,Vector Double) -> (Vector Double,Vector Double) -> Render ()
renderMinMaxSamples xscale yscale xmin xmax s f e (mono,t) y = do
(BoundingBox _ _ w _) <- get
let ln = dim t
(xmin_ix,xmax_ix,num_pts) = if mono
then (findMinIdx t xmin 0 (ln1)
,findMaxIdx t xmax (ln1) 0
,xmax_ix xmin_ix + 1)
else (0,ln1,ln)
diff'' = floor $ (fromIntegral num_pts)/w
diff' = if diff'' <= 1 then 1 else diff''
diff = if mono then diff' else 1
cairo $ do
case s of
Nothing -> C.moveTo ((t @> xmin_ix)*xscale) (((fst $ y) @> xmin_ix)*yscale)
Just s' -> s'
_ <- runMaybeT $ mapVectorWithIndexM_ (\i t' -> do
when (i >= xmin_ix && i `mod` diff == 0)
(renderMinMaxSample i xmax_ix t' (f xscale yscale) (e xscale yscale) y)
return ()) t
return ()
renderSample :: Int -> Int -> Vector Double
-> (Double -> Double -> C.Render ())
-> Double -> MaybeT C.Render ()
renderSample ix xmax_ix t f y
| ix >= xmax_ix = do
lift $ f (t @> ix) y
fail "end of bounded area"
| otherwise = do
lift $ f (t @> ix) y
renderMinMaxSample :: Int -> Int -> Double
-> (Double -> (Double,Double) -> C.Render ()) -> C.Render ()
-> (Vector Double,Vector Double) -> MaybeT C.Render ()
renderMinMaxSample ix xmax_ix t f e (yl,yu)
| ix >= xmax_ix = do
lift $ do
f t (yl @> ix,yu @> ix)
e
fail "end of bounded area"
| otherwise = do
lift $ f t (yl @> ix,yu @> ix)
renderLineSample :: Double → Double -> Double -> Double -> C.Render ()
renderLineSample xscale yscale x y = C.lineTo (x*xscale) (y*yscale)
endLineSample :: Double -> Double -> C.Render ()
endLineSample _ _ = C.stroke
renderPointSample :: LineWidth -> Glyph -> Double -> Double -> Double -> Double -> C.Render ()
renderPointSample pz g xscale yscale x y = do
C.moveTo (x*xscale) (y*yscale)
renderGlyph pz g
endPointSample :: Double -> Double -> C.Render ()
endPointSample _ _ = return ()
renderImpulseSample :: Double -> Double -> Double -> Double -> C.Render ()
renderImpulseSample xscale yscale x y = do
let x' = x*xscale
C.moveTo x' 0
C.lineTo x (y*yscale)
C.stroke
endImpulseSample :: Double -> Double -> C.Render ()
endImpulseSample _ _ = return ()
renderStepSample :: Double -> Double -> Double -> Double -> C.Render ()
renderStepSample xscale yscale x y = do
(x',_) <- C.getCurrentPoint
let y' = y*yscale
C.lineTo x' y'
C.lineTo (x*xscale) y'
endStepSample :: Double -> Double -> C.Render ()
endStepSample _ _ = C.stroke
renderAreaSample :: Double -> Double -> Double -> Double -> C.Render ()
renderAreaSample xscale yscale x y = C.lineTo (x*xscale) (y*yscale)
endAreaSample :: Double -> Double -> Double -> Double -> C.Render ()
endAreaSample x0 _ xscale _ = do
(x',_) <- C.getCurrentPoint
let x0' = x0*xscale
C.lineTo x' 0
C.lineTo x0' 0
C.closePath
C.fill
C.stroke
renderBarSample :: Width -> Color -> Color -> Double -> Double -> Double -> Double -> C.Render ()
renderBarSample bw c bc xscale yscale x y = do
setColour bc
C.rectangle ((x*xscale)bw/2) 0 bw (y*yscale)
C.strokePreserve
setColour c
C.fill
endBarSample :: Double -> Double -> C.Render ()
endBarSample _ _ = return ()
renderHistSample :: Width -> Color -> Color -> Double -> Double -> Double -> Double -> C.Render ()
renderHistSample _ c bc xscale yscale x y = do
(x',_) <- C.getCurrentPoint
let x'' = x*xscale
C.stroke
setColour bc
C.rectangle x' 0 (x''x') (y*yscale)
C.strokePreserve
setColour c
C.fill
C.moveTo x'' 0
endHistSample :: Double -> Double -> C.Render ()
endHistSample _ _ = return ()
renderCandleSample :: Width -> Color -> Color -> Double -> Double -> Double -> (Double,Double) -> C.Render ()
renderCandleSample bw c bc xscale yscale x (yl,yu) = do
setColour bc
let (yl',yu') = (yl*yscale,yu*yscale)
C.rectangle ((x*xscale)bw/2) yl' bw (yu'yl')
C.strokePreserve
if (yl < yu)
then do
setColour c
else do
C.setSourceRGBA 1 1 1 1
C.fill
endCandleSample :: Double -> Double -> C.Render ()
endCandleSample _ _ = return ()
renderWhiskerSample :: Width -> Color -> Color → Bool -> Double -> Double -> Double -> (Double,Double) -> C.Render ()
renderWhiskerSample bw _ bc whiskers xscale yscale x (yl,yu) = do
setColour bc
let (x',yl',yu') = (x*xscale,yl*yscale,yu*yscale)
C.moveTo x' yl'
C.lineTo x' yu'
if whiskers
then do
C.moveTo (x'bw/2) yu'
C.lineTo (x'+bw/2) yu'
C.moveTo (x'bw/2) yl'
C.lineTo (x'+bw/2) yl'
else return ()
C.stroke
endWhiskerSample :: Double -> Double -> C.Render ()
endWhiskerSample _ _ = return ()