-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | A lightweight plotting library, exporting to SVG -- -- This library provides drawing and plotting datastructures and -- functions; it is aimed in particular at scientific visualization, but -- it also exposes its plotting primitives and a general purpose 2D -- geometry library. @package plot-light @version 0.2.5 module Data.TimeSeries -- | An instant, defined by date (Day) and TimeOfDay data Tick Tick :: Day -> TimeOfDay -> Tick -- | Create a Tick from valid (year, month, day, hour, minute, second) mkTick :: Integer -> Int -> Int -> Int -> Int -> Pico -> Maybe Tick -- | A point in a time series data TsPoint a Tsp :: Tick -> a -> TsPoint a [_tick] :: TsPoint a -> Tick [_val] :: TsPoint a -> a tickToFractional :: Fractional b => TsPoint a -> b -- | Map a Tick onto the rationals fromTick :: Tick -> Rational -- | Map a rational onto a Tick toTick :: Rational -> Tick hourTick :: Double halfHourTick :: Double quarterHourTick :: Double instance GHC.Show.Show a => GHC.Show.Show (Data.TimeSeries.TsPoint a) instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.TimeSeries.TsPoint a) instance GHC.Classes.Ord Data.TimeSeries.Tick instance GHC.Show.Show Data.TimeSeries.Tick instance GHC.Classes.Eq Data.TimeSeries.Tick module Graphics.Rendering.Plot.Light.PlotTypes -- | plot-light provides functionality for rendering vector -- graphics in SVG format. It is geared in particular towards scientific -- plotting, and it is termed "light" because it only requires a few -- common Haskell dependencies and no external libraries. -- --

Usage

-- -- To incorporate this library in your projects you just need import -- Graphics.Rendering.Plot.Light. If GHC complains of name -- collisions you must import the module in "qualified" form. -- --

Examples

-- -- If you wish to try out the examples in this page, you will need to -- have these additional statements : -- --
--   import Text.Blaze.Svg.Renderer.String (renderSvg)
--   
-- --
--   import qualified Data.Colour.Names as C
--   
-- --

1. Heatmap plot of a 2D function

-- -- --
--   import qualified Data.Text.IO as T (readFile, writeFile)
--   import qualified Data.Text as T
--   
--   xPlot = 400
--   yPlot = 300
--   
--   fdat = FigureData xPlot yPlot 0.1 0.8 0.1 0.9 10
--   
--   palette0 = palette [C.red, C.white, C.blue] 15
--   
--   plotFun2ex1 = do
--    let 
--      p1 = Point (-2) (-2)
--      p2 = Point 2 2
--      frame = mkFrame p1 p2
--      nx = 50 
--      ny = 50
--      f x y = cos ( pi * theta ) * sin r 
--        where
--          r = x'**2 + y'**2
--          theta = atan2 y' x'
--          (x', y') = (fromRational x, fromRational y)
--      lps = plotFun2 f $ meshGrid frame nx ny
--      vmin = minimum $ _lplabel <$> lps
--      vmax = maximum $ _lplabel <$> lps   
--      pixels = heatmap' fdat palette0 frame nx ny lps
--      cbar = colourBar fdat palette0 10 vmin vmax 10 TopRight 100
--      svg_t = svgHeader xPlot yPlot $ do
--         axes fdat frame 2 C.black 10 10
--         pixels
--         cbar
--    T.writeFile "heatmap.svg" $ T.pack $ renderSvg svg_t
--   
-- -- This example demonstrates how to plot a 2D scalar function and write -- the output to SVG file. -- -- First, we define a FigureData object (which holds the SVG -- figure dimensions and parameters for the white margin around the -- rendering canvas) and a palette. -- -- Afterwards we declare a Frame that bounds the rendering canvas -- using mkFrame. This is discretized in nx by -- ny pixels with meshGrid, and the function f -- is computed at the intersections of the mesh with -- plotFun2. -- -- The axes function adds labeled axes to the figure; the user -- just needs to specify stroke width and color and how many ticks to -- display. -- -- The data to be plotted (represented in this case as a list of -- LabeledPoints, in which the "label" carries the function value) -- are then mapped onto the given colour palette and drawn to the SVG -- canvas as a heatmap', i.e. a mesh of filled rectangles -- (Caution: do not exceed resolutions of ~ hundred pixels per side). -- -- Next, we create the legend; in this case this is a colourBar -- element that requires the data bounds vmin, vmax. -- -- As a last step, the SVG content is wrapped in the appropriate markdown -- by svgHeader and written to file. module Graphics.Rendering.Plot.Light -- | heatmap assumes the input data corresponds to evenly sampled -- values of a scalar-valued field, and it maps the data values onto the -- provided palette (which can be created e.g. with -- brewerSet). heatmap :: FigureData Rational -> [Colour Double] -> [[Scientific]] -> Svg -- | heatmap' renders one SVG pixel for every LabeledPoint -- supplied as input. The LabeledPoints must be bounded by the -- Frame. heatmap' :: (Foldable f, Functor f, Show a, RealFrac a, RealFrac t) => FigureData a -> [Colour Double] -> Frame a -> a -> a -> f (LabeledPoint t a) -> Svg -- | Plot a scalar function f of points in the plane (i.e. -- <math>) plotFun2 :: Functor f => (t -> t -> l) -> f (Point t) -> f (LabeledPoint l t) -- | A colour bar legend, to be used within heatmap-style plots. colourBar :: (RealFrac t, RealFrac a, Show a, Enum t, Floating a) => FigureData (Ratio Integer) -> [Colour Double] -> a -> t -> t -> Int -> LegendPosition_ -> a -> Svg -- | A rectangle, defined by its anchor point coordinates and side lengths -- --
--   > putStrLn $ renderSvg $ rect (Point 100 200) 30 60 2 Nothing (Just C.aquamarine)
--   <rect x="100.0" y="200.0" width="30.0" height="60.0" fill="#7fffd4" stroke="none" stroke-width="2.0" />
--   
rect :: (Show a, RealFrac a) => a -> a -> a -> Maybe (Colour Double) -> Maybe (Colour Double) -> Point a -> Svg -- | A rectangle, defined by its center coordinates and side lengths -- --
--   > putStrLn $ renderSvg $ rectCentered (Point 20 30) 15 30 (Just C.blue) (Just C.red)
--   <g transform="translate(12.5 15.0)"><rect width="15.0" height="30.0" fill="#ff0000" stroke="#0000ff" /></g>
--   
rectCentered :: (Show a, RealFrac a) => a -> a -> a -> Maybe (Colour Double) -> Maybe (Colour Double) -> Point a -> Svg squareCentered :: (Show a, RealFrac a) => a -> a -> Maybe (Colour Double) -> Maybe (Colour Double) -> Point a -> Svg -- | A circle -- --
--   > putStrLn $ renderSvg $ circle (Point 20 30) 15 (Just C.blue) (Just C.red)
--   <circle cx="20.0" cy="30.0" r="15.0" fill="#ff0000" stroke="#0000ff" />
--   
circle :: (Real a1, Real a) => a -> a -> Maybe (Colour Double) -> Maybe (Colour Double) -> Point a1 -> Svg -- | Line segment between two Points -- --
--   > putStrLn $ renderSvg $ line (Point 0 0) (Point 1 1) 0.1 Continuous C.blueviolet
--   <line x1="0.0" y1="0.0" x2="1.0" y2="1.0" stroke="#8a2be2" stroke-width="0.1" />
--   
-- --
--   > putStrLn $ renderSvg (line (Point 0 0) (Point 1 1) 0.1 (Dashed [0.2, 0.3]) C.blueviolet)
--   <line x1="0.0" y1="0.0" x2="1.0" y2="1.0" stroke="#8a2be2" stroke-width="0.1" stroke-dasharray="0.2, 0.3" />
--   
line :: (Show a, RealFrac a) => Point a -> Point a -> a -> LineStroke_ a -> Colour Double -> Svg -- | text renders text onto the SVG canvas -- --

Conventions

-- -- The Point argument p refers to the lower-left -- corner of the text box. -- -- The text box can be rotated by rot degrees around p -- and then anchored at either its beginning, middle or end to p -- with the TextAnchor_ flag. -- -- The user can supply an additional V2 displacement which will be -- applied after rotation and anchoring and refers to the rotated -- text box frame. -- --
--   > putStrLn $ renderSvg $ text (-45) C.green TAEnd "blah" (V2 (- 10) 0) (Point 250 0)
--   <text x="-10.0" y="0.0" transform="translate(250.0 0.0)rotate(-45.0)" fill="#008000" text-anchor="end">blah</text>
--   
text :: (Show a, Real a) => a -> Int -> Colour Double -> TextAnchor_ -> Text -> V2 a -> Point a -> Svg -- | Polyline (piecewise straight line) -- --
--   > putStrLn $ renderSvg (polyline [Point 100 50, Point 120 20, Point 230 50] 4 (Dashed [3, 5]) Round C.blueviolet)
--   <polyline points="100.0,50.0 120.0,20.0 230.0,50.0" fill="none" stroke="#8a2be2" stroke-width="4.0" stroke-linejoin="round" stroke-dasharray="3.0, 5.0" />
--   
polyline :: (Foldable t, Show a1, Show a, RealFrac a, RealFrac a1) => a1 -> LineStroke_ a -> StrokeLineJoin_ -> Colour Double -> t (Point a) -> Svg -- | A filled polyline -- --
--   > putStrLn $ renderSvg $ filledPolyline C.coral 0.3 [(Point 0 1), (Point 10 40), Point 34 50, Point 30 5]
--   <polyline points="0,1 10,40 34,50 30,5" fill="#ff7f50" fill-opacity="0.3" />
--   
filledPolyline :: (Foldable t, Show a, Real o) => Colour Double -> o -> t (Point a) -> Svg pixel :: (Show a, RealFrac a) => [Colour Double] -> a -> a -> Scientific -> Scientific -> LabeledPoint Scientific a -> Svg pixel' :: (Show a, RealFrac a, RealFrac t) => [Colour Double] -> a -> a -> t -> t -> LabeledPoint t a -> Svg -- | A filled band of colour, given the coordinates of its center line -- -- This element can be used to overlay uncertainty ranges (e.g. the first -- standard deviation) associated with a given data series. filledBand :: (Foldable t, Real o, Show a) => Colour Double -> o -> (l -> a) -> (l -> a) -> t (LabeledPoint l a) -> Svg -- | A candlestick glyph for time series plots. This is a type of -- box glyph, commonly used in plotting financial time series. -- -- Some financial market quantities such as currency exchange rates are -- aggregated over some time period (e.g. a day) and summarized by -- various quantities, for example opening and closing rates, as well as -- maximum and minimum over the period. -- -- By convention, the candlestick colour depends on the derivative -- sign of one such quantity (e.g. it is green if the market closes -- higher than it opened, and red otherwise). candlestick :: (Show a, RealFrac a) => (a -> a -> Bool) -> (l -> a) -> (l -> a) -> (l -> a) -> (l -> a) -> a -> a -> Colour Double -> Colour Double -> Colour Double -> LabeledPoint l a -> Svg axes :: (Show a, RealFrac a) => FigureData a -> Frame Rational -> a -> Colour Double -> Int -> Int -> MarkupM () -- | toPlot performs a number of related operations: -- -- toPlot :: (Functor t, Foldable t, Show a, RealFrac a) => FigureData a -> (l -> Text) -> (l -> Text) -> a -> a -> a -> Colour Double -> Maybe (t (LabeledPoint l a)) -> Maybe (t (LabeledPoint l a)) -> (t (LabeledPoint l a) -> Svg) -> t (LabeledPoint l a) -> Svg -- | Figure data data FigureData a FigureData :: a -> a -> a -> a -> a -> a -> Int -> FigureData a -- | Figure width [figWidth] :: FigureData a -> a -- | Figure height [figHeight] :: FigureData a -> a -- | Left margin fraction (w.r.t figure width) [figLeftMFrac] :: FigureData a -> a -- | Right margin fraction (w.r.t figure width) [figRightMFrac] :: FigureData a -> a -- | Top margin fraction (w.r.t figure height) [figTopMFrac] :: FigureData a -> a -- | Bottom margin fraction (w.r.t figure height) [figBottomMFrac] :: FigureData a -> a -- | Tick label font size [figLabelFontSize] :: FigureData a -> Int -- | Specify a continuous or dashed stroke data LineStroke_ a Continuous :: LineStroke_ a Dashed :: [a] -> LineStroke_ a -- | Specify the type of connection between line segments data StrokeLineJoin_ Miter :: StrokeLineJoin_ Round :: StrokeLineJoin_ Bevel :: StrokeLineJoin_ Inherit :: StrokeLineJoin_ -- | Specify at which end should the text be anchored to its current point data TextAnchor_ TAStart :: TextAnchor_ TAMiddle :: TextAnchor_ TAEnd :: TextAnchor_ data LegendPosition_ TopLeft :: LegendPosition_ TopRight :: LegendPosition_ BottomLeft :: LegendPosition_ BottomRight :: LegendPosition_ -- | `blendTwo c1 c2 n` creates a palette of n intermediate -- colours, interpolated linearly between c1 and c2. blendTwo :: Colour Double -> Colour Double -> Int -> [Colour Double] -- | `palette cs n` blends linearly a list of colours cs, by -- generating n intermediate colours between each consecutive -- pair. palette :: [Colour Double] -> Int -> [Colour Double] pickColour :: RealFrac t => [Colour Double] -> t -> t -> t -> Colour Double -- | Create the SVG header svgHeader :: Real a => a -> a -> Svg -> Svg -- | Move a Svg entity to a new position translateSvg :: Show a => Point a -> Svg -> Svg -- | A frame, i.e. a bounding box for objects data Frame a Frame :: Point a -> Point a -> Frame a [_fpmin] :: Frame a -> Point a [_fpmax] :: Frame a -> Point a -- | A Point object defines a point in the plane data Point a Point :: a -> a -> Point a [_px] :: Point a -> a [_py] :: Point a -> a -- | A LabeledPoint carries a "label" (i.e. any additional -- information such as a text tag, or any other data structure), in -- addition to position information. Data points on a plot are -- LabeledPoints. data LabeledPoint l a LabeledPoint :: Point a -> l -> LabeledPoint l a -- | The coordinates of the LabeledPoint (i.e. where in the figure -- it will be rendered) [_lp] :: LabeledPoint l a -> Point a -- | Data associated with the LabeledPoint [_lplabel] :: LabeledPoint l a -> l -- | Given a labelling function and a Point p, returned a -- LabeledPoint containing p and the computed label labelPoint :: (Point a -> l) -> Point a -> LabeledPoint l a -- | Apply a function to the label mapLabel :: (l1 -> l2) -> LabeledPoint l1 a -> LabeledPoint l2 a data Axis X :: Axis Y :: Axis -- | V2 is a vector in R^2 data V2 a V2 :: a -> a -> V2 a -- | A Mat2 can be seen as a linear operator that acts on points in the -- plane data Mat2 a Mat2 :: a -> a -> a -> a -> Mat2 a -- | Diagonal matrices in R2 behave as scaling transformations data DiagMat2 a DMat2 :: a -> a -> DiagMat2 a -- | Create a diagonal matrix diagMat2 :: Num a => a -> a -> DiagMat2 a -- | The origin of the axes, point (0, 0) origin :: Num a => Point a -- | X-aligned unit vector e1 :: Num a => V2 a -- | Y-aligned unit vector e2 :: Num a => V2 a -- | Euclidean (L^2) norm norm2 :: (Hermitian v, Floating n, n ~ (InnerProduct v)) => v -> n -- | Normalize a V2 w.r.t. its Euclidean norm normalize2 :: (InnerProduct v ~ Scalar v, Floating (Scalar v), Hermitian v) => v -> v -- | Create a V2 v from two endpoints p1, p2. That is v -- can be seen as pointing from p1 to p2 v2fromEndpoints :: Num a => Point a -> Point a -> V2 a -- | Build a V2 v from a Point p (i.e. assuming v points from -- the origin (0,0) to p) v2fromPoint :: Num a => Point a -> V2 a -- | Move a point along a vector movePoint :: Num a => V2 a -> Point a -> Point a -- | Move a LabeledPoint along a vector moveLabeledPointV2 :: Num a => V2 a -> LabeledPoint l a -> LabeledPoint l a moveLabeledPointBwFrames :: Fractional a => Frame a -> Frame a -> Bool -> Bool -> LabeledPoint l a -> LabeledPoint l a -- | Create a V2 v from two endpoints p1, p2. That is v -- can be seen as pointing from p1 to p2 (-.) :: Num a => Point a -> Point a -> V2 a -- | Move point to the SVG frame of reference (for which the origing is a -- the top-left corner of the screen) toSvgFrame :: Fractional a => Frame a -> Frame a -> Bool -> Point a -> Point a -- | Move LabeledPoint to the SVG frame of reference (uses -- toSvgFrame ) toSvgFrameLP :: Fractional a => Frame a -> Frame a -> Bool -> LabeledPoint l a -> LabeledPoint l a -- | `pointRange n p q` returns a list of `n+1` equi-spaced Points -- between p and q (i.e. the input points are included -- as the first and last points in the list) pointRange :: (Fractional a, Integral n) => n -> Point a -> Point a -> [Point a] -- | Given two frames F1 and F2, returns a function -- f that maps an arbitrary vector v contained within -- F1 onto one contained within F2. -- -- This function is composed of three affine maps : -- --
    --
  1. map v into a vector v01 that points within the -- unit square,
  2. --
  3. map v01 onto v01'. This transformation serves to -- e.g. flip the dataset along the y axis (since the origin of the SVG -- canvas is the top-left corner of the screen). If this is not needed -- one can just supply the identity matrix and the zero vector,
  4. --
  5. map v01' onto the target frame F2.
  6. --
-- -- NB: we do not check that v is actually contained within the -- F1, nor that v01' is still contained within [0,1] x -- [0, 1]. This has to be supplied correctly by the user. frameToFrame :: Fractional a => Frame a -> Frame a -> Bool -> Bool -> V2 a -> V2 a -- | Create a Frame from a container of Points P, -- i.e. construct two points p1 and p2 such that : -- -- p1 := inf(x,y) P -- -- p2 := sup(x,y) P frameFromPoints :: (Ord a, Foldable t, Functor t) => t (Point a) -> Frame a frameFromFigData :: Num a => FigureData a -> Frame a mkFrame :: Point a -> Point a -> Frame a -- | Build a frame rooted at the origin (0, 0) mkFrameOrigin :: Num a => a -> a -> Frame a -- | The width is the extent in the x direction and -- height is the extent in the y direction width :: Num a => Frame a -> a -- | The width is the extent in the x direction and -- height is the extent in the y direction height :: Num a => Frame a -> a figFWidth :: Num a => FigureData a -> a figFHeight :: Num a => FigureData a -> a -- | Additive group : -- --
--   v ^+^ zero == zero ^+^ v == v
--   
-- --
--   v ^-^ v == zero
--   
class AdditiveGroup v -- | Identity element zero :: AdditiveGroup v => v -- | Group action ("sum") (^+^) :: AdditiveGroup v => v -> v -> v -- | Inverse group action ("subtraction") (^-^) :: AdditiveGroup v => v -> v -> v -- | Vector space : multiplication by a scalar quantity class AdditiveGroup v => VectorSpace v where type Scalar v :: * where { type family Scalar v :: *; } -- | Scalar multiplication (.*) :: VectorSpace v => Scalar v -> v -> v -- | Hermitian space : inner product class VectorSpace v => Hermitian v where type InnerProduct v :: * where { type family InnerProduct v :: *; } -- | Inner product (<.>) :: Hermitian v => v -> v -> InnerProduct v -- | Linear maps, i.e. linear transformations of vectors class Hermitian v => LinearMap m v -- | Matrix action, i.e. linear transformation of a vector (#>) :: LinearMap m v => m -> v -> v -- | Multiplicative matrix semigroup ("multiplying" two matrices together) class MultiplicativeSemigroup m -- | Matrix product (##) :: MultiplicativeSemigroup m => m -> m -> m -- | The class of invertible linear transformations class LinearMap m v => MatrixGroup m v -- | Inverse matrix action on a vector (<\>) :: MatrixGroup m v => m -> v -> v -- | Numerical equality class Eps a -- | Comparison within numerical precision (~=) :: Eps a => a -> a -> Bool -- | A list of nx by ny points in the plane arranged on -- the vertices of a rectangular mesh. -- -- NB: Only the minimum x, y coordinate point is included in the output -- mesh. This is intentional, since the output from this can be used as -- an input to functions that use a corner rather than the center point -- as refernce (e.g. rect) meshGrid :: (Enum a, RealFrac a) => Frame a -> Int -> Int -> [Point a] toFloat :: Scientific -> Float -- | Separate whole and decimal part of a fractional number e.g. -- --
--   > wholeDecimal 
--   
wholeDecimal :: (Integral a, RealFrac b) => b -> (a, b)