-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Polynomials -- -- Polynomials with Num and Semiring instances, backed by -- Vector. @package poly @version 0.2.0.0 -- | Dense polynomials and a Semiring-based interface. module Data.Poly.Semiring -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
-- >>> (X + 1) + (X - 1) :: VPoly Integer -- 2 * X + 0 -- -- >>> (X + 1) * (X - 1) :: UPoly Int -- 1 * X^2 + 0 * X + (-1) ---- -- Polynomials are stored normalized, without leading zero coefficients, -- so 0 * X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v a -- | Make Poly from a vector of coefficients (first element -- corresponds to a constant term). -- --
-- >>> :set -XOverloadedLists -- -- >>> toPoly [1,2,3] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- -- >>> toPoly [0,0,0] :: UPoly Int -- 0 --toPoly :: (Eq a, Semiring a, Vector v a) => v a -> Poly v a -- | Create a polynomial from a constant term. constant :: (Eq a, Semiring a, Vector v a) => a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Semiring a, Vector v a, Eq (v a)) => Poly v a -- | Evaluate at a given point. -- --
-- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 -- -- >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1) -- 1 * X^2 + 2 * X + 2 --eval :: (Semiring a, Vector v a) => Poly v a -> a -> a -- | Take a derivative. -- --
-- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 0 * X + 3 --deriv :: (Eq a, Semiring a, Vector v a) => Poly v a -> Poly v a -- | Dense polynomials and a Num-based interface. module Data.Poly -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
-- >>> (X + 1) + (X - 1) :: VPoly Integer -- 2 * X + 0 -- -- >>> (X + 1) * (X - 1) :: UPoly Int -- 1 * X^2 + 0 * X + (-1) ---- -- Polynomials are stored normalized, without leading zero coefficients, -- so 0 * X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v a -- | Make Poly from a list of coefficients (first element -- corresponds to a constant term). -- --
-- >>> :set -XOverloadedLists -- -- >>> toPoly [1,2,3] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- -- >>> toPoly [0,0,0] :: UPoly Int -- 0 --toPoly :: (Eq a, Num a, Vector v a) => v a -> Poly v a -- | Create a polynomial from a constant term. constant :: (Eq a, Num a, Vector v a) => a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Num a, Vector v a, Eq (v a)) => Poly v a -- | Evaluate at a given point. -- --
-- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 -- -- >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1) -- 1 * X^2 + 2 * X + 2 --eval :: (Num a, Vector v a) => Poly v a -> a -> a -- | Take a derivative. -- --
-- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 0 * X + 3 --deriv :: (Eq a, Num a, Vector v a) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
-- >>> integral (constant 3.0 * X^2 + constant 3.0) :: UPoly Double -- 1.0 * X^3 + 0.0 * X^2 + 3.0 * X + 0.0 --integral :: (Eq a, Fractional a, Vector v a) => Poly v a -> Poly v a