-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Polynomials -- -- Polynomials backed by Vector. @package poly @version 0.3.0.0 -- | Dense polynomials and a Num-based interface. module Data.Poly -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
-- >>> (X + 1) + (X - 1) :: VPoly Integer -- 2 * X + 0 -- -- >>> (X + 1) * (X - 1) :: UPoly Int -- 1 * X^2 + 0 * X + (-1) ---- -- Polynomials are stored normalized, without leading zero coefficients, -- so 0 * X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v a -- | Return a leading power and coefficient of a non-zero polynomial. -- --
-- >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int) -- Just (3,4) -- -- >>> leading (0 :: UPoly Int) -- Nothing --leading :: Vector v a => Poly v a -> Maybe (Word, a) -- | Make Poly from a list of coefficients (first element -- corresponds to a constant term). -- --
-- >>> :set -XOverloadedLists -- -- >>> toPoly [1,2,3] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- -- >>> toPoly [0,0,0] :: UPoly Int -- 0 --toPoly :: (Eq a, Num a, Vector v a) => v a -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Num a, Vector v a) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
-- >>> scale 2 3 (X^2 + 1) :: UPoly Int -- 3 * X^4 + 0 * X^3 + 3 * X^2 + 0 * X + 0 --scale :: (Eq a, Num a, Vector v a) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Num a, Vector v a, Eq (v a)) => Poly v a -- | Evaluate at a given point. -- --
-- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 -- -- >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1) -- 1 * X^2 + 2 * X + 2 --eval :: (Num a, Vector v a) => Poly v a -> a -> a -- | Take a derivative. -- --
-- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 0 * X + 3 --deriv :: (Eq a, Num a, Vector v a) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
-- >>> integral (3 * X^2 + 3) :: UPoly Double -- 1.0 * X^3 + 0.0 * X^2 + 3.0 * X + 0.0 --integral :: (Eq a, Fractional a, Vector v a) => Poly v a -> Poly v a -- | Wrapper over polynomials, providing a faster GcdDomain -- instance, when coefficients are Fractional. newtype PolyOverFractional poly PolyOverFractional :: poly -> PolyOverFractional poly [unPolyOverFractional] :: PolyOverFractional poly -> poly -- | Dense polynomials and a Semiring-based interface. module Data.Poly.Semiring -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
-- >>> (X + 1) + (X - 1) :: VPoly Integer -- 2 * X + 0 -- -- >>> (X + 1) * (X - 1) :: UPoly Int -- 1 * X^2 + 0 * X + (-1) ---- -- Polynomials are stored normalized, without leading zero coefficients, -- so 0 * X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v a -- | Return a leading power and coefficient of a non-zero polynomial. -- --
-- >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int) -- Just (3,4) -- -- >>> leading (0 :: UPoly Int) -- Nothing --leading :: Vector v a => Poly v a -> Maybe (Word, a) -- | Make Poly from a vector of coefficients (first element -- corresponds to a constant term). -- --
-- >>> :set -XOverloadedLists -- -- >>> toPoly [1,2,3] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- -- >>> toPoly [0,0,0] :: UPoly Int -- 0 --toPoly :: (Eq a, Semiring a, Vector v a) => v a -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Semiring a, Vector v a) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
-- >>> scale 2 3 (X^2 + 1) :: UPoly Int -- 3 * X^4 + 0 * X^3 + 3 * X^2 + 0 * X + 0 --scale :: (Eq a, Semiring a, Vector v a) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Semiring a, Vector v a, Eq (v a)) => Poly v a -- | Evaluate at a given point. -- --
-- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 -- -- >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1) -- 1 * X^2 + 2 * X + 2 --eval :: (Semiring a, Vector v a) => Poly v a -> a -> a -- | Take a derivative. -- --
-- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 0 * X + 3 --deriv :: (Eq a, Semiring a, Vector v a) => Poly v a -> Poly v a -- | Wrapper over polynomials, providing a faster GcdDomain -- instance, when coefficients are Fractional. newtype PolyOverFractional poly PolyOverFractional :: poly -> PolyOverFractional poly [unPolyOverFractional] :: PolyOverFractional poly -> poly -- | Sparse polynomials with Num instance. module Data.Poly.Sparse -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
-- >>> (X + 1) + (X - 1) :: VPoly Integer -- 2 * X -- -- >>> (X + 1) * (X - 1) :: UPoly Int -- 1 * X^2 + (-1) ---- -- Polynomials are stored normalized, without zero coefficients, so 0 * -- X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v (Word, a) -- | Return a leading power and coefficient of a non-zero polynomial. -- --
-- >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int) -- Just (3,4) -- -- >>> leading (0 :: UPoly Int) -- Nothing --leading :: Vector v (Word, a) => Poly v a -> Maybe (Word, a) -- | Make Poly from a list of (power, coefficient) pairs. (first -- element corresponds to a constant term). -- --
-- >>> :set -XOverloadedLists -- -- >>> toPoly [(0,1),(1,2),(2,3)] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- -- >>> S.toPoly [(0,0),(1,0),(2,0)] :: UPoly Int -- 0 --toPoly :: (Eq a, Num a, Vector v (Word, a)) => v (Word, a) -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Num a, Vector v (Word, a)) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
-- >>> scale 2 3 (X^2 + 1) :: UPoly Int -- 3 * X^4 + 3 * X^2 --scale :: (Eq a, Num a, Vector v (Word, a)) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Num a, Vector v (Word, a), Eq (v (Word, a))) => Poly v a -- | Evaluate at a given point. -- --
-- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 -- -- >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1) -- 1 * X^2 + 2 * X + 2 --eval :: (Num a, Vector v (Word, a)) => Poly v a -> a -> a -- | Take a derivative. -- --
-- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 3 --deriv :: (Eq a, Num a, Vector v (Word, a)) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
-- >>> integral (3 * X^2 + 3) :: UPoly Double -- 1.0 * X^3 + 3.0 * X --integral :: (Eq a, Fractional a, Vector v (Word, a)) => Poly v a -> Poly v a -- | Sparse polynomials with Semiring instance. module Data.Poly.Sparse.Semiring -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
-- >>> (X + 1) + (X - 1) :: VPoly Integer -- 2 * X -- -- >>> (X + 1) * (X - 1) :: UPoly Int -- 1 * X^2 + (-1) ---- -- Polynomials are stored normalized, without zero coefficients, so 0 * -- X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v (Word, a) -- | Return a leading power and coefficient of a non-zero polynomial. -- --
-- >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int) -- Just (3,4) -- -- >>> leading (0 :: UPoly Int) -- Nothing --leading :: Vector v (Word, a) => Poly v a -> Maybe (Word, a) -- | Make Poly from a list of (power, coefficient) pairs. (first -- element corresponds to a constant term). -- --
-- >>> :set -XOverloadedLists -- -- >>> toPoly [(0,1),(1,2),(2,3)] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- -- >>> S.toPoly [(0,0),(1,0),(2,0)] :: UPoly Int -- 0 --toPoly :: (Eq a, Semiring a, Vector v (Word, a)) => v (Word, a) -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Semiring a, Vector v (Word, a)) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
-- >>> scale 2 3 (X^2 + 1) :: UPoly Int -- 3 * X^4 + 3 * X^2 --scale :: (Eq a, Semiring a, Vector v (Word, a)) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Semiring a, Vector v (Word, a), Eq (v (Word, a))) => Poly v a -- | Evaluate at a given point. -- --
-- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 -- -- >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1) -- 1 * X^2 + 2 * X + 2 --eval :: (Semiring a, Vector v (Word, a)) => Poly v a -> a -> a -- | Take a derivative. -- --
-- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 3 --deriv :: (Eq a, Semiring a, Vector v (Word, a)) => Poly v a -> Poly v a