-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Polynomials -- -- Polynomials backed by Vector. @package poly @version 0.3.2.0 -- | Dense polynomials and a Num-based interface. module Data.Poly -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
--   >>> (X + 1) + (X - 1) :: VPoly Integer
--   2 * X + 0
--   
--   >>> (X + 1) * (X - 1) :: UPoly Int
--   1 * X^2 + 0 * X + (-1)
--   
-- -- Polynomials are stored normalized, without leading zero coefficients, -- so 0 * X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v a -- | Return a leading power and coefficient of a non-zero polynomial. -- --
--   >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int)
--   Just (3,4)
--   
--   >>> leading (0 :: UPoly Int)
--   Nothing
--   
leading :: Vector v a => Poly v a -> Maybe (Word, a) -- | Make Poly from a list of coefficients (first element -- corresponds to a constant term). -- --
--   >>> :set -XOverloadedLists
--   
--   >>> toPoly [1,2,3] :: VPoly Integer
--   3 * X^2 + 2 * X + 1
--   
--   >>> toPoly [0,0,0] :: UPoly Int
--   0
--   
toPoly :: (Eq a, Num a, Vector v a) => v a -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Num a, Vector v a) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
--   >>> scale 2 3 (X^2 + 1) :: UPoly Int
--   3 * X^4 + 0 * X^3 + 3 * X^2 + 0 * X + 0
--   
scale :: (Eq a, Num a, Vector v a) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Num a, Vector v a, Eq (v a)) => Poly v a -- | Evaluate at a given point. -- --
--   >>> eval (X^2 + 1 :: UPoly Int) 3
--   10
--   
--   >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1)
--   1 * X^2 + 2 * X + 2
--   
eval :: (Num a, Vector v a) => Poly v a -> a -> a -- | Take a derivative. -- --
--   >>> deriv (X^3 + 3 * X) :: UPoly Int
--   3 * X^2 + 0 * X + 3
--   
deriv :: (Eq a, Num a, Vector v a) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
--   >>> integral (3 * X^2 + 3) :: UPoly Double
--   1.0 * X^3 + 0.0 * X^2 + 3.0 * X + 0.0
--   
integral :: (Eq a, Fractional a, Vector v a) => Poly v a -> Poly v a -- | Wrapper for polynomials over Field, providing a faster -- GcdDomain instance. newtype PolyOverField poly PolyOverField :: poly -> PolyOverField poly [unPolyOverField] :: PolyOverField poly -> poly -- | Execute the extended Euclidean algorithm. For polynomials a -- and b, compute their unique greatest common divisor -- g and the unique coefficient polynomial s satisfying -- as + bt = g, such that either g is monic, or g = -- 0 and s is monic, or g = s = 0. -- --
--   >>> gcdExt (X^2 + 1 :: UPoly Double) (X^3 + 3 * X :: UPoly Double)
--   (1.0, 0.5 * X^2 + (-0.0) * X + 1.0)
--   
--   >>> gcdExt (X^3 + 3 * X :: UPoly Double) (3 * X^4 + 3 * X^2 :: UPoly Double)
--   (1.0 * X + 0.0,(-0.16666666666666666) * X^2 + (-0.0) * X + 0.3333333333333333)
--   
gcdExt :: (Eq a, Field a, Vector v a, Eq (v a)) => Poly v a -> Poly v a -> (Poly v a, Poly v a) -- | Deprecated: Use PolyOverField type PolyOverFractional = PolyOverField -- | Deprecated: Use PolyOverField pattern PolyOverFractional :: poly -> PolyOverField poly -- | Deprecated: Use unPolyOverField unPolyOverFractional :: PolyOverField poly -> poly -- | Dense polynomials and a Semiring-based interface. module Data.Poly.Semiring -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
--   >>> (X + 1) + (X - 1) :: VPoly Integer
--   2 * X + 0
--   
--   >>> (X + 1) * (X - 1) :: UPoly Int
--   1 * X^2 + 0 * X + (-1)
--   
-- -- Polynomials are stored normalized, without leading zero coefficients, -- so 0 * X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v a -- | Return a leading power and coefficient of a non-zero polynomial. -- --
--   >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int)
--   Just (3,4)
--   
--   >>> leading (0 :: UPoly Int)
--   Nothing
--   
leading :: Vector v a => Poly v a -> Maybe (Word, a) -- | Make Poly from a vector of coefficients (first element -- corresponds to a constant term). -- --
--   >>> :set -XOverloadedLists
--   
--   >>> toPoly [1,2,3] :: VPoly Integer
--   3 * X^2 + 2 * X + 1
--   
--   >>> toPoly [0,0,0] :: UPoly Int
--   0
--   
toPoly :: (Eq a, Semiring a, Vector v a) => v a -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Semiring a, Vector v a) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
--   >>> scale 2 3 (X^2 + 1) :: UPoly Int
--   3 * X^4 + 0 * X^3 + 3 * X^2 + 0 * X + 0
--   
scale :: (Eq a, Semiring a, Vector v a) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Semiring a, Vector v a, Eq (v a)) => Poly v a -- | Evaluate at a given point. -- --
--   >>> eval (X^2 + 1 :: UPoly Int) 3
--   10
--   
--   >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1)
--   1 * X^2 + 2 * X + 2
--   
eval :: (Semiring a, Vector v a) => Poly v a -> a -> a -- | Take a derivative. -- --
--   >>> deriv (X^3 + 3 * X) :: UPoly Int
--   3 * X^2 + 0 * X + 3
--   
deriv :: (Eq a, Semiring a, Vector v a) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
--   >>> integral (3 * X^2 + 3) :: UPoly Double
--   1.0 * X^3 + 0.0 * X^2 + 3.0 * X + 0.0
--   
integral :: (Eq a, Field a, Vector v a) => Poly v a -> Poly v a -- | Wrapper for polynomials over Field, providing a faster -- GcdDomain instance. newtype PolyOverField poly PolyOverField :: poly -> PolyOverField poly [unPolyOverField] :: PolyOverField poly -> poly -- | Execute the extended Euclidean algorithm. For polynomials a -- and b, compute their unique greatest common divisor -- g and the unique coefficient polynomial s satisfying -- as + bt = g, such that either g is monic, or g = -- 0 and s is monic, or g = s = 0. -- --
--   >>> gcdExt (X^2 + 1 :: UPoly Double) (X^3 + 3 * X :: UPoly Double)
--   (1.0, 0.5 * X^2 + (-0.0) * X + 1.0)
--   
--   >>> gcdExt (X^3 + 3 * X :: UPoly Double) (3 * X^4 + 3 * X^2 :: UPoly Double)
--   (1.0 * X + 0.0,(-0.16666666666666666) * X^2 + (-0.0) * X + 0.3333333333333333)
--   
gcdExt :: (Eq a, Field a, Vector v a, Eq (v a)) => Poly v a -> Poly v a -> (Poly v a, Poly v a) -- | Deprecated: Use PolyOverField type PolyOverFractional = PolyOverField -- | Deprecated: Use PolyOverField pattern PolyOverFractional :: poly -> PolyOverField poly -- | Deprecated: Use unPolyOverField unPolyOverFractional :: PolyOverField poly -> poly -- | Sparse polynomials with Num instance. module Data.Poly.Sparse -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
--   >>> (X + 1) + (X - 1) :: VPoly Integer
--   2 * X
--   
--   >>> (X + 1) * (X - 1) :: UPoly Int
--   1 * X^2 + (-1)
--   
-- -- Polynomials are stored normalized, without zero coefficients, so 0 * -- X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v (Word, a) -- | Return a leading power and coefficient of a non-zero polynomial. -- --
--   >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int)
--   Just (3,4)
--   
--   >>> leading (0 :: UPoly Int)
--   Nothing
--   
leading :: Vector v (Word, a) => Poly v a -> Maybe (Word, a) -- | Make Poly from a list of (power, coefficient) pairs. (first -- element corresponds to a constant term). -- --
--   >>> :set -XOverloadedLists
--   
--   >>> toPoly [(0,1),(1,2),(2,3)] :: VPoly Integer
--   3 * X^2 + 2 * X + 1
--   
--   >>> S.toPoly [(0,0),(1,0),(2,0)] :: UPoly Int
--   0
--   
toPoly :: (Eq a, Num a, Vector v (Word, a)) => v (Word, a) -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Num a, Vector v (Word, a)) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
--   >>> scale 2 3 (X^2 + 1) :: UPoly Int
--   3 * X^4 + 3 * X^2
--   
scale :: (Eq a, Num a, Vector v (Word, a)) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Num a, Vector v (Word, a), Eq (v (Word, a))) => Poly v a -- | Evaluate at a given point. -- --
--   >>> eval (X^2 + 1 :: UPoly Int) 3
--   10
--   
--   >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1)
--   1 * X^2 + 2 * X + 2
--   
eval :: (Num a, Vector v (Word, a)) => Poly v a -> a -> a -- | Take a derivative. -- --
--   >>> deriv (X^3 + 3 * X) :: UPoly Int
--   3 * X^2 + 3
--   
deriv :: (Eq a, Num a, Vector v (Word, a)) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
--   >>> integral (3 * X^2 + 3) :: UPoly Double
--   1.0 * X^3 + 3.0 * X
--   
integral :: (Eq a, Fractional a, Vector v (Word, a)) => Poly v a -> Poly v a -- | Execute the extended Euclidean algorithm. For polynomials a -- and b, compute their unique greatest common divisor -- g and the unique coefficient polynomial s satisfying -- as + bt = g, such that either g is monic, or g = -- 0 and s is monic, or g = s = 0. -- --
--   >>> gcdExt (X^2 + 1 :: UPoly Double) (X^3 + 3 * X :: UPoly Double)
--   (1.0, 0.5 * X^2 + (-0.0) * X + 1.0)
--   
--   >>> gcdExt (X^3 + 3 * X :: UPoly Double) (3 * X^4 + 3 * X^2 :: UPoly Double)
--   (1.0 * X + 0.0,(-0.16666666666666666) * X^2 + (-0.0) * X + 0.3333333333333333)
--   
gcdExt :: (Eq a, Field a, Vector v (Word, a), Eq (v (Word, a))) => Poly v a -> Poly v a -> (Poly v a, Poly v a) -- | Sparse polynomials with Semiring instance. module Data.Poly.Sparse.Semiring -- | Polynomials of one variable with coefficients from a, backed -- by a Vector v (boxed, unboxed, storable, etc.). -- -- Use pattern X for construction: -- --
--   >>> (X + 1) + (X - 1) :: VPoly Integer
--   2 * X
--   
--   >>> (X + 1) * (X - 1) :: UPoly Int
--   1 * X^2 + (-1)
--   
-- -- Polynomials are stored normalized, without zero coefficients, so 0 * -- X + 1 equals to 1. -- -- Ord instance does not make much sense mathematically, it is -- defined only for the sake of Set, Map, etc. data Poly v a -- | Polynomials backed by boxed vectors. type VPoly = Poly Vector -- | Polynomials backed by unboxed vectors. type UPoly = Poly Vector -- | Convert Poly to a vector of coefficients (first element -- corresponds to a constant term). unPoly :: Poly v a -> v (Word, a) -- | Return a leading power and coefficient of a non-zero polynomial. -- --
--   >>> leading ((2 * X + 1) * (2 * X^2 - 1) :: UPoly Int)
--   Just (3,4)
--   
--   >>> leading (0 :: UPoly Int)
--   Nothing
--   
leading :: Vector v (Word, a) => Poly v a -> Maybe (Word, a) -- | Make Poly from a list of (power, coefficient) pairs. (first -- element corresponds to a constant term). -- --
--   >>> :set -XOverloadedLists
--   
--   >>> toPoly [(0,1),(1,2),(2,3)] :: VPoly Integer
--   3 * X^2 + 2 * X + 1
--   
--   >>> S.toPoly [(0,0),(1,0),(2,0)] :: UPoly Int
--   0
--   
toPoly :: (Eq a, Semiring a, Vector v (Word, a)) => v (Word, a) -> Poly v a -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Semiring a, Vector v (Word, a)) => Word -> a -> Poly v a -- | Multiply a polynomial by a monomial, expressed as a power and a -- coefficient. -- --
--   >>> scale 2 3 (X^2 + 1) :: UPoly Int
--   3 * X^4 + 3 * X^2
--   
scale :: (Eq a, Semiring a, Vector v (Word, a)) => Word -> a -> Poly v a -> Poly v a -- | Create an identity polynomial. pattern X :: (Eq a, Semiring a, Vector v (Word, a), Eq (v (Word, a))) => Poly v a -- | Evaluate at a given point. -- --
--   >>> eval (X^2 + 1 :: UPoly Int) 3
--   10
--   
--   >>> eval (X^2 + 1 :: VPoly (UPoly Int)) (X + 1)
--   1 * X^2 + 2 * X + 2
--   
eval :: (Semiring a, Vector v (Word, a)) => Poly v a -> a -> a -- | Take a derivative. -- --
--   >>> deriv (X^3 + 3 * X) :: UPoly Int
--   3 * X^2 + 3
--   
deriv :: (Eq a, Semiring a, Vector v (Word, a)) => Poly v a -> Poly v a -- | Compute an indefinite integral of a polynomial, setting constant term -- to zero. -- --
--   >>> integral (3 * X^2 + 3) :: UPoly Double
--   1.0 * X^3 + 3.0 * X
--   
integral :: (Eq a, Field a, Vector v (Word, a)) => Poly v a -> Poly v a -- | Execute the extended Euclidean algorithm. For polynomials a -- and b, compute their unique greatest common divisor -- g and the unique coefficient polynomial s satisfying -- as + bt = g, such that either g is monic, or g = -- 0 and s is monic, or g = s = 0. -- --
--   >>> gcdExt (X^2 + 1 :: UPoly Double) (X^3 + 3 * X :: UPoly Double)
--   (1.0, 0.5 * X^2 + (-0.0) * X + 1.0)
--   
--   >>> gcdExt (X^3 + 3 * X :: UPoly Double) (3 * X^4 + 3 * X^2 :: UPoly Double)
--   (1.0 * X + 0.0,(-0.16666666666666666) * X^2 + (-0.0) * X + 0.3333333333333333)
--   
gcdExt :: (Eq a, Field a, Vector v (Word, a), Eq (v (Word, a))) => Poly v a -> Poly v a -> (Poly v a, Poly v a)