{-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-orphans #-} module Sparse ( testSuite , ShortPoly(..) ) where import Prelude hiding (gcd, quotRem, rem) import Data.Euclidean (Euclidean(..), GcdDomain(..)) import Data.Function import Data.Int import Data.List (groupBy, sortOn) import Data.Mod import Data.Poly.Sparse import qualified Data.Poly.Sparse.Semiring as S import Data.Proxy import Data.Semiring (Semiring) import qualified Data.Vector as V import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed as U import Test.Tasty import Test.Tasty.QuickCheck hiding (scale, numTests) import Quaternion import TestUtils instance (Eq a, Semiring a, Arbitrary a, G.Vector v (Word, a)) => Arbitrary (Poly v a) where arbitrary = S.toPoly . G.fromList <$> arbitrary shrink = fmap (S.toPoly . G.fromList) . shrink . G.toList . unPoly newtype ShortPoly a = ShortPoly { unShortPoly :: a } deriving (Eq, Show, Semiring, GcdDomain, Euclidean) instance (Eq a, Semiring a, Arbitrary a, G.Vector v (Word, a)) => Arbitrary (ShortPoly (Poly v a)) where arbitrary = ShortPoly . S.toPoly . G.fromList . (\xs -> take (length xs `mod` 5) xs) <$> arbitrary shrink = fmap (ShortPoly . S.toPoly . G.fromList) . shrink . G.toList . unPoly . unShortPoly testSuite :: TestTree testSuite = testGroup "Sparse" [ arithmeticTests , otherTests , lawsTests , evalTests , derivTests ] lawsTests :: TestTree lawsTests = testGroup "Laws" $ semiringTests ++ ringTests ++ numTests ++ euclideanTests ++ gcdDomainTests ++ isListTests ++ showTests semiringTests :: [TestTree] semiringTests = [ mySemiringLaws (Proxy :: Proxy (Poly U.Vector ())) , mySemiringLaws (Proxy :: Proxy (Poly U.Vector Int8)) , mySemiringLaws (Proxy :: Proxy (Poly V.Vector Integer)) , tenTimesLess $ mySemiringLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] ringTests :: [TestTree] ringTests = [ myRingLaws (Proxy :: Proxy (Poly U.Vector ())) , myRingLaws (Proxy :: Proxy (Poly U.Vector Int8)) , myRingLaws (Proxy :: Proxy (Poly V.Vector Integer)) , myRingLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] numTests :: [TestTree] numTests = [ myNumLaws (Proxy :: Proxy (Poly U.Vector Int8)) , myNumLaws (Proxy :: Proxy (Poly V.Vector Integer)) , tenTimesLess $ myNumLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] gcdDomainTests :: [TestTree] gcdDomainTests = [ myGcdDomainLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector Integer))) , tenTimesLess $ myGcdDomainLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector (Mod 3)))) , tenTimesLess $ myGcdDomainLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector Rational))) ] euclideanTests :: [TestTree] euclideanTests = [ myEuclideanLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector (Mod 3)))) , myEuclideanLaws (Proxy :: Proxy (ShortPoly (Poly V.Vector Rational))) ] isListTests :: [TestTree] isListTests = [ myIsListLaws (Proxy :: Proxy (Poly U.Vector ())) , myIsListLaws (Proxy :: Proxy (Poly U.Vector Int8)) , myIsListLaws (Proxy :: Proxy (Poly V.Vector Integer)) , tenTimesLess $ myIsListLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] showTests :: [TestTree] showTests = [ myShowLaws (Proxy :: Proxy (Poly U.Vector ())) , myShowLaws (Proxy :: Proxy (Poly U.Vector Int8)) , myShowLaws (Proxy :: Proxy (Poly V.Vector Integer)) , tenTimesLess $ myShowLaws (Proxy :: Proxy (Poly U.Vector (Quaternion Int))) ] arithmeticTests :: TestTree arithmeticTests = testGroup "Arithmetic" [ testProperty "addition matches reference" $ \(xs :: [(Word, Int)]) ys -> toPoly (V.fromList (addRef xs ys)) === toPoly (V.fromList xs) + toPoly (V.fromList ys) , testProperty "subtraction matches reference" $ \(xs :: [(Word, Int)]) ys -> toPoly (V.fromList (subRef xs ys)) === toPoly (V.fromList xs) - toPoly (V.fromList ys) , tenTimesLess $ testProperty "multiplication matches reference" $ \(xs :: [(Word, Int)]) ys -> toPoly (V.fromList (mulRef xs ys)) === toPoly (V.fromList xs) * toPoly (V.fromList ys) ] addRef :: Num a => [(Word, a)] -> [(Word, a)] -> [(Word, a)] addRef [] ys = ys addRef xs [] = xs addRef xs@((xp, xc) : xs') ys@((yp, yc) : ys') = case xp `compare` yp of LT -> (xp, xc) : addRef xs' ys EQ -> (xp, xc + yc) : addRef xs' ys' GT -> (yp, yc) : addRef xs ys' subRef :: Num a => [(Word, a)] -> [(Word, a)] -> [(Word, a)] subRef [] ys = map (fmap negate) ys subRef xs [] = xs subRef xs@((xp, xc) : xs') ys@((yp, yc) : ys') = case xp `compare` yp of LT -> (xp, xc) : subRef xs' ys EQ -> (xp, xc - yc) : subRef xs' ys' GT -> (yp, negate yc) : subRef xs ys' mulRef :: Num a => [(Word, a)] -> [(Word, a)] -> [(Word, a)] mulRef xs ys = map (\ws -> (fst (head ws), sum (map snd ws))) $ groupBy ((==) `on` fst) $ sortOn fst $ [ (xp + yp, xc * yc) | (xp, xc) <- xs, (yp, yc) <- ys ] otherTests :: TestTree otherTests = testGroup "other" $ concat [ otherTestGroup (Proxy :: Proxy Int8) , otherTestGroup (Proxy :: Proxy (Quaternion Int)) ] otherTestGroup :: forall a. (Eq a, Show a, Semiring a, Num a, Arbitrary a, U.Unbox a, G.Vector U.Vector a) => Proxy a -> [TestTree] otherTestGroup _ = [ testProperty "leading p 0 == Nothing" $ \p -> leading (monomial p 0 :: UPoly a) === Nothing , testProperty "leading . monomial = id" $ \p c -> c /= 0 ==> leading (monomial p c :: UPoly a) === Just (p, c) , testProperty "monomial matches reference" $ \p (c :: a) -> monomial p c === toPoly (V.fromList (monomialRef p c)) , tenTimesLess $ testProperty "scale matches multiplication by monomial" $ \p c (xs :: UPoly a) -> scale p c xs === monomial p c * xs ] monomialRef :: Num a => Word -> a -> [(Word, a)] monomialRef p c = [(p, c)] evalTests :: TestTree evalTests = testGroup "eval" $ concat [ evalTestGroup (Proxy :: Proxy (Poly U.Vector Int8)) , evalTestGroup (Proxy :: Proxy (Poly V.Vector Integer)) , substTestGroup (Proxy :: Proxy (Poly U.Vector Int8)) ] evalTestGroup :: forall v a. (Eq a, Num a, Semiring a, Arbitrary a, Show a, Eq (v (Word, a)), Show (v (Word, a)), G.Vector v (Word, a)) => Proxy (Poly v a) -> [TestTree] evalTestGroup _ = [ testProperty "eval (p + q) r = eval p r + eval q r" $ \p q r -> e (p + q) r === e p r + e q r , testProperty "eval (p * q) r = eval p r * eval q r" $ \p q r -> e (p * q) r === e p r * e q r , testProperty "eval x p = p" $ \p -> e X p === p , testProperty "eval (monomial 0 c) p = c" $ \c p -> e (monomial 0 c) p === c , testProperty "eval' (p + q) r = eval' p r + eval' q r" $ \p q r -> e' (p + q) r === e' p r + e' q r , testProperty "eval' (p * q) r = eval' p r * eval' q r" $ \p q r -> e' (p * q) r === e' p r * e' q r , testProperty "eval' x p = p" $ \p -> e' S.X p === p , testProperty "eval' (S.monomial 0 c) p = c" $ \c p -> e' (S.monomial 0 c) p === c ] where e :: Poly v a -> a -> a e = eval e' :: Poly v a -> a -> a e' = S.eval substTestGroup :: forall v a. (Eq a, Num a, Semiring a, Arbitrary a, Show a, Eq (v (Word, a)), Show (v (Word, a)), G.Vector v (Word, a)) => Proxy (Poly v a) -> [TestTree] substTestGroup _ = [ testProperty "subst x p = p" $ \p -> e X p === p , testProperty "subst (monomial 0 c) p = monomial 0 c" $ \c p -> e (monomial 0 c) p === monomial 0 c , testProperty "subst' x p = p" $ \p -> e' S.X p === p , testProperty "subst' (S.monomial 0 c) p = S.monomial 0 c" $ \c p -> e' (S.monomial 0 c) p === S.monomial 0 c ] where e :: Poly v a -> Poly v a -> Poly v a e = subst e' :: Poly v a -> Poly v a -> Poly v a e' = S.subst derivTests :: TestTree derivTests = testGroup "deriv" [ testProperty "deriv = S.deriv" $ \(p :: Poly V.Vector Integer) -> deriv p === S.deriv p , testProperty "integral = S.integral" $ \(p :: Poly V.Vector Rational) -> integral p === S.integral p , testProperty "deriv . integral = id" $ \(p :: Poly V.Vector Rational) -> deriv (integral p) === p , testProperty "deriv c = 0" $ \c -> deriv (monomial 0 c :: Poly V.Vector Int) === 0 , testProperty "deriv cX = c" $ \c -> deriv (monomial 0 c * X :: Poly V.Vector Int) === monomial 0 c , testProperty "deriv (p + q) = deriv p + deriv q" $ \p q -> deriv (p + q) === (deriv p + deriv q :: Poly V.Vector Int) , testProperty "deriv (p * q) = p * deriv q + q * deriv p" $ \p q -> deriv (p * q) === (p * deriv q + q * deriv p :: Poly V.Vector Int) -- , testProperty "deriv (subst p q) = deriv q * subst (deriv p) q" $ -- \(p :: Poly V.Vector Int) (q :: Poly U.Vector Int) -> -- deriv (subst p q) === deriv q * subst (deriv p) q ]