-- | -- Module: Data.Poly.Semiring -- Copyright: (c) 2019 Andrew Lelechenko -- Licence: BSD3 -- Maintainer: Andrew Lelechenko -- -- Dense polynomials and a 'Semiring'-based interface. -- {-# LANGUAGE DataKinds #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE PatternSynonyms #-} module Data.Poly.Semiring ( Poly , VPoly , UPoly , unPoly , leading , toPoly , monomial , scale , pattern X , eval , subst , deriv , integral , denseToSparse , sparseToDense , dft , inverseDft , dftMult ) where import Data.Bits import Data.Euclidean (Field) import Data.Semiring (Semiring(..)) import qualified Data.Vector.Generic as G import qualified Data.Vector.Unboxed.Sized as SU import qualified Data.Poly.Internal.Convert as Convert import Data.Poly.Internal.Dense (Poly(..), VPoly, UPoly, leading) import qualified Data.Poly.Internal.Dense as Dense import Data.Poly.Internal.Dense.Field () import Data.Poly.Internal.Dense.DFT import Data.Poly.Internal.Dense.GcdDomain () import qualified Data.Poly.Internal.Multi as Sparse -- | Make 'Poly' from a vector of coefficients -- (first element corresponds to a constant term). -- -- >>> :set -XOverloadedLists -- >>> toPoly [1,2,3] :: VPoly Integer -- 3 * X^2 + 2 * X + 1 -- >>> toPoly [0,0,0] :: UPoly Int -- 0 toPoly :: (Eq a, Semiring a, G.Vector v a) => v a -> Poly v a toPoly = Dense.toPoly' -- | Create a monomial from a power and a coefficient. monomial :: (Eq a, Semiring a, G.Vector v a) => Word -> a -> Poly v a monomial = Dense.monomial' -- | Multiply a polynomial by a monomial, expressed as a power and a coefficient. -- -- >>> scale 2 3 (X^2 + 1) :: UPoly Int -- 3 * X^4 + 0 * X^3 + 3 * X^2 + 0 * X + 0 scale :: (Eq a, Semiring a, G.Vector v a) => Word -> a -> Poly v a -> Poly v a scale = Dense.scale' -- | Create an identity polynomial. pattern X :: (Eq a, Semiring a, G.Vector v a) => Poly v a pattern X = Dense.X' -- | Evaluate at a given point. -- -- >>> eval (X^2 + 1 :: UPoly Int) 3 -- 10 eval :: (Semiring a, G.Vector v a) => Poly v a -> a -> a eval = Dense.eval' -- | Substitute another polynomial instead of 'X'. -- -- >>> subst (X^2 + 1 :: UPoly Int) (X + 1 :: UPoly Int) -- 1 * X^2 + 2 * X + 2 subst :: (Eq a, Semiring a, G.Vector v a, G.Vector w a) => Poly v a -> Poly w a -> Poly w a subst = Dense.subst' -- | Take a derivative. -- -- >>> deriv (X^3 + 3 * X) :: UPoly Int -- 3 * X^2 + 0 * X + 3 deriv :: (Eq a, Semiring a, G.Vector v a) => Poly v a -> Poly v a deriv = Dense.deriv' -- | Compute an indefinite integral of a polynomial, -- setting constant term to zero. -- -- >>> integral (3 * X^2 + 3) :: UPoly Double -- 1.0 * X^3 + 0.0 * X^2 + 3.0 * X + 0.0 integral :: (Eq a, Field a, G.Vector v a) => Poly v a -> Poly v a integral = Dense.integral' -- | Multiplication of polynomials using -- . -- It could be faster than '(*)' for large polynomials -- if multiplication of coefficients is particularly expensive. dftMult :: (Eq a, Field a, G.Vector v a) => (Int -> a) -- ^ mapping from \( N = 2^n \) to a primitive root \( \sqrt[N]{1} \) -> Poly v a -> Poly v a -> Poly v a dftMult getPrimRoot (Poly xs) (Poly ys) = toPoly $ inverseDft primRoot $ G.zipWith times (dft primRoot xs') (dft primRoot ys') where nextPowerOf2 :: Int -> Int nextPowerOf2 0 = 1 nextPowerOf2 1 = 1 nextPowerOf2 x = 1 `unsafeShiftL` (finiteBitSize (0 :: Int) - countLeadingZeros (x - 1)) padTo l vs = G.generate l (\k -> if k < G.length vs then vs G.! k else zero) zl = nextPowerOf2 (G.length xs + G.length ys) xs' = padTo zl xs ys' = padTo zl ys primRoot = getPrimRoot zl -- | Convert from dense to sparse polynomials. -- -- >>> :set -XFlexibleContexts -- >>> denseToSparse (1 `plus` Data.Poly.X^2) :: Data.Poly.Sparse.UPoly Int -- 1 * X^2 + 1 denseToSparse :: (Eq a, Semiring a, G.Vector v a, G.Vector v (SU.Vector 1 Word, a)) => Dense.Poly v a -> Sparse.Poly v a denseToSparse = Convert.denseToSparse' -- | Convert from sparse to dense polynomials. -- -- >>> :set -XFlexibleContexts -- >>> sparseToDense (1 `plus` Data.Poly.Sparse.X^2) :: Data.Poly.UPoly Int -- 1 * X^2 + 0 * X + 1 sparseToDense :: (Semiring a, G.Vector v a, G.Vector v (SU.Vector 1 Word, a)) => Sparse.Poly v a -> Dense.Poly v a sparseToDense = Convert.sparseToDense'