module Math.Polynomial.Type
( Endianness(..)
, Poly, poly, polyCoeffs
, polyIsZero, polyIsOne
) where
import Data.AdditiveGroup
import Data.VectorSpace
import Data.List.ZipSum
dropEnd :: (a -> Bool) -> [a] -> [a]
dropEnd p = go id
where
go t (x:xs)
| p x = go (t.(x:)) xs
| otherwise = t (x : go id xs)
go _ [] = []
trim :: Num a => Poly a -> Poly a
trim p@(Poly _ True _) = p
trim (Poly LE _ cs) = Poly LE True (dropEnd (==0) cs)
trim (Poly BE _ cs) = Poly BE True (dropWhile (==0) cs)
poly :: Num a => Endianness -> [a] -> Poly a
poly end cs = trim (Poly end False cs)
polyCoeffs :: Num a => Endianness -> Poly a -> [a]
polyCoeffs end p = case trim p of
Poly e _ cs | e == end -> cs
| otherwise -> reverse cs
polyIsZero :: Num a => Poly a -> Bool
polyIsZero = null . coeffs . trim
polyIsOne :: Num a => Poly a -> Bool
polyIsOne = ([1]==) . coeffs . trim
data Endianness
= BE
| LE
deriving (Eq, Ord, Enum, Bounded, Show)
data Poly a = Poly
{ endianness :: !Endianness
, _trimmed :: !Bool
, coeffs :: ![a]
}
instance Num a => Show (Poly a) where
showsPrec p (trim -> Poly end _ cs)
= showParen (p > 10)
( showString "poly "
. showsPrec 11 end
. showChar ' '
. showsPrec 11 cs
)
instance (Num a, Eq a) => Eq (Poly a) where
p == q
| endianness p == endianness q
= coeffs (trim p) == coeffs (trim q)
| otherwise
= polyCoeffs BE p == polyCoeffs BE q
instance Functor Poly where
fmap f (Poly end _ cs) = Poly end False (map f cs)
le :: Poly a -> [a]
le p@(endianness -> LE) = coeffs p
le p = reverse (coeffs p)
instance AdditiveGroup a => AdditiveGroup (Poly a) where
zeroV = Poly LE True []
(le -> a) ^+^ (le -> b) = Poly LE False (zipSumV a b)
negateV = fmap negateV
instance VectorSpace a => VectorSpace (Poly a) where
type Scalar (Poly a) = Scalar a
(*^) s = fmap (s *^)