{-# LANGUAGE TypeApplications #-} -- To apply types: @Type, it seems to select the specific class instance, when GHC is not able to reason about things, commenting this out shows an interesting interface {-# LANGUAGE ScopedTypeVariables #-} -- To reduce some code duplication, this is important {-# LANGUAGE FlexibleContexts #-} -- to talk about class constraints like: (PositC es, PositC (Next es)) => {-# LANGUAGE BangPatterns #-} {-# LANGUAGE DataKinds #-} -- For our ES kind and the constructors Z, I, II, III, IV, V for exponent size type, post-pended with the version. {-# OPTIONS_GHC -Wno-type-defaults #-} -- Turn off noise {-# OPTIONS_GHC -Wno-unused-top-binds #-} -- Turn off noise module Test.Algorithms ( funLogDomainReduction , funLogTaylor , funExp2 , funExpTaylor , funLogTuma , funExpTuma , funGammaSeriesFused , funGammaRamanujan , funGammaCalc , funGammaNemes , funGammaYang , funGammaChen , funGammaXminus1 -- , funGammaViaLngamma , funPi1 , funPi2 , funPi3 , funPi4 , funPi5 , funPi6 ) where import Posit -- run with -O_TEST CPP directive import Prelude hiding (rem) -- would like to: -- import Posit.Internal.ElementaryFunctions -- Perhaps on the chopping block if we are moving to ElementaryFunctions -- Imports for implementing the Transcendental Functions import GHC.Natural (Natural) -- Import the Natural Numbers ℕ (u+2115) for some of the Transcendental Functions import Data.Ratio ((%)) -- Import the Rational Numbers ℚ (u+211A), ℚ can get arbitrarily close to Real numbers ℝ (u+211D), used for some of the Transcendental Functions import Debug.Trace (trace) -- temporary for debug purposes -- The machine implementation of the Posit encoding/decoding import Posit.Internal.PositC -- The main internal implementation details -- Algorithms in Type: `Posit es` -- ============================================================== -- Other functions: -- ============================================================== -- Approximation of log2 "Log Base 2" approx_log2 :: forall es. PositC es => Posit es -> Posit es approx_log2 NaR = NaR approx_log2 z | z <= 0 = NaR -- includes the NaR case | otherwise = go (fromInteger ex) 1 sig -- domain reduction where go :: Posit es -> Posit es -> Posit es -> Posit es go !acc !mak !sig' -- fixed point iteration, y is [1,2) :: Posit256 | sig == 1 = acc | acc == (acc + mak * 2^^(negate.fst.term $ sig')) = acc -- stop when fixed point is reached | otherwise = go (acc + mak * 2^^(negate.fst.term $ sig')) (mak * 2^^(negate.fst.term $ sig')) (snd.term $ sig') term = findSquaring 0 -- returns (m,s') m the number of times to square, and the new significand (ex, sig) = (int * fromIntegral (2^(exponentSize @es)) + fromIntegral nat, fromRational rat) (_,int,nat,rat) = (posit2TupPosit @es).toRational $ z -- sign should always be positive findSquaring m s | s >= 2 && s < 4 = (m, s/2) | otherwise = findSquaring (m+1) (s^2) -- calculate atan(1/2^n) -- sum k=0 to k=inf of the terms, iterate until a fixed point is reached funArcTan :: Natural -> Posit256 funArcTan 0 = pi / 4 funArcTan n | n <= 122 = go 0 0 | otherwise = z -- at small z... (atan z) == z "small angle approximation" where go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Integer -> Posit256 term k = ((-1)^k * z^(2 * k + 1)) / fromIntegral (2 * k + 1) z = 1 / 2^n -- recip $ 2^n :: Posit256 -- inv2PowN -- fI2PN = (1 /) . (2 ^) funInv2PowN :: Natural -> Posit256 funInv2PowN n = 1 / 2^n -- calculate atanh(1/2^n) -- sum k=0 to k=inf of the terms, iterate until a fixed point is reached funArcHypTan :: Natural -> Posit256 funArcHypTan 0 = NaR funArcHypTan n | n <= 122 = go 0 0 | otherwise = z -- at small z... (atan z) == z "small angle approximation" where go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Integer -> Posit256 term k = (z^(2 * k + 1)) / fromIntegral (2 * k + 1) z = 1 / 2^n -- funAtanhTaylor :: Posit256 -> Posit256 funAtanhTaylor NaR = NaR funAtanhTaylor x | abs x >= 1 = NaR | abs x < 1/2^122 = x -- small angle approximaiton, found emperically | x < 0 = negate.funAtanhTaylor.negate $ x | otherwise = go 0 0 where go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Integer -> Posit256 term k = (x^(2 * k + 1)) / fromIntegral (2 * k + 1) -- -- Taylor series expansion and fixed point algorithm, most accurate near zero funSinTaylor :: Posit256 -> Posit256 funSinTaylor NaR = NaR funSinTaylor z = go 0 0 where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Natural -> Posit256 term k = (-1)^k * z^(2*k+1) / (fromIntegral.fac $ 2*k+1) -- -- Taylor series expansion and fixed point algorithm, most accurate near zero funCosTaylor :: Posit256 -> Posit256 funCosTaylor NaR = NaR funCosTaylor z = go 0 0 where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Natural -> Posit256 term k = (-1)^k * z^(2*k) / (fromIntegral.fac $ 2*k) -- -- ~16 ULP for 42 funSinh :: Posit256 -> Posit256 funSinh NaR = NaR funSinh x = (exp x - exp (negate x))/2 -- -- ~2 ULP for 42 funSinhTaylor :: Posit256 -> Posit256 funSinhTaylor NaR = NaR funSinhTaylor z = go 0 0 where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Natural -> Posit256 term k = z^(2*k+1) / (fromIntegral.fac $ 2*k+1) -- -- funSinhTuma :: Posit256 -> Posit256 funSinhTuma NaR = NaR funSinhTuma 0 = 0 funSinhTuma z | z < 0 = negate.funSinhTuma.negate $ z funSinhTuma z | z > 80 = 0.5 * funExpTuma z funSinhTuma z = go 256 1 where go :: Natural -> Posit256 -> Posit256 go 1 !acc = z * acc go !k !acc = go (k-1) (1 + (z^2 / fromIntegral ((2*k-2) * (2*k-1))) * acc) -- -- ~17 ULP for 42 funCosh :: Posit256 -> Posit256 funCosh NaR = NaR funCosh x = (exp x + exp (negate x))/2 -- -- ~3 ULP for 42 funCoshTaylor :: Posit256 -> Posit256 funCoshTaylor NaR = NaR funCoshTaylor z = go 0 0 where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Natural -> Posit256 term k = z^(2*k) / (fromIntegral.fac $ 2*k) -- -- funCoshTuma :: Posit256 -> Posit256 funCoshTuma NaR = NaR funCoshTuma 0 = 1 funCoshTuma z | z < 0 = funCoshTuma.negate $ z funCoshTuma z | z > 3 = 0.5 * (funExpTuma z + funExpTuma (negate z)) funCoshTuma z = go 20 1 where go :: Natural -> Posit256 -> Posit256 go 1 !acc = acc go !k !acc = go (k-1) (1 + (z^2 / fromIntegral ((2*k-3)*(2*k-2)))*acc) -- {- -- | 'phi' fixed point recursive algorithm, approx_phi :: (PositC es) => Posit es -> Posit es approx_phi px@(Posit x) | x == x' = Posit x | otherwise = approx_phi (Posit x') where (Posit x') = (px^2 + 2*px) / (px^2 + 1) -- LiquidHaskell is telling me this is unsafe if px is imaginary -- lucky for us Posit256 is not imaginary -} -- -- Some series don't converge reliably, this one does funLnOf2 :: Posit256 funLnOf2 = go 1 0 where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc | otherwise = go (k+1) (acc + term k) term :: Natural -> Posit256 term k = 1 / fromIntegral (2^k * k) -- -- -- Gauss–Legendre algorithm, Seems only accurate to 2-3 ULP, but really slow funPi1 :: forall es. (PositC es, PositC (Next es)) => Posit es funPi1 = go 0 3 1 (recip.sqrt $ 2) (recip 4) 1 where go :: Posit es -> Posit es -> Posit es -> Posit es -> Posit es -> Posit es -> Posit es go !prev !next !a !b !t !p | prev == next = next | otherwise = let a' = (a + b) / 2 b' = sqrt $ a * b t' = t - p * (a - ((a + b) / 2))^2 p' = 2 * p in go next ((a' + b')^2 / (4 * t')) a' b' t' p' -- -- Borwein's algorithm, with quintic convergence, -- gets to 7 ULP in 4 iterations, but really slow due to expensive function evaluations -- quite unstable and will not converge if sqrt is not accurate, which means log must be accurate funPi2 :: forall es. (PositC es, PositC (Next es)) => Posit es funPi2 = recip $ go 0 0 0 0.5 (5 / phi^3) where go :: Posit es -> Posit es -> Natural -> Posit es -> Posit es -> Posit es go !prevA !prevS !n !a !s | prevA == a = a | prevS == s = a | abs (prevA - a) <= 2*eps = a -- P256 or Posit128, will not reach a fixed point where `prevA == a` it sort of oscelates until divergence occurs, if we test for less than 2*eps it can stop early | abs (prevS - s) <= 2*eps = a | otherwise = let x = 5 / s - 1 y = (x - 1)^2 + 7 z = (0.5 * x * (y + sqrt (y^2 - 4 * x^3)))**(1/5) a' = s^2 * a - (5^n * ((s^2 - 5)/2 + sqrt (s * (s^2 - 2*s + 5)))) s' = 25 / ((z + x/z + 1)^2 * s) in go a s (n+1) (trace ("ΔA: " ++ show (a' - a)) a') (trace ("ΔS: " ++ show (s' - s)) s') -- -- Bailey–Borwein–Plouffe (BBP) formula, to 1-2 ULP, and blazing fast, converges in 60 iterations funPi3 :: forall es. (PositC es) => Posit es funPi3 = go 0 0 where go :: Integer -> Posit es -> Posit es go !k !acc | acc == acc + term k = acc | otherwise = go (k+1) (acc + term k) term :: Integer -> Posit es term k = fromRational $ (1 % 16^k) * ((120 * k^2 + 151 * k + 47) % (512 * k^4 + 1024 * k^3 + 712 * k^2 + 194 * k + 15)) -- -- Fabrice Bellard improvement on the BBP, 2-3 ULP, even faster, converges in 25 iterations, really fast funPi4 :: forall es. (PositC es) => Posit es funPi4 = (1/2^6) * go 0 0 where go :: Integer -> Posit es -> Posit es go !k !acc | acc == acc + term k = acc | otherwise = go (k+1) (acc + term k) term :: Integer -> Posit es term k = fromRational $ ((-1)^k % (2^(10*k))) * ((1 % (10 * k + 9)) - (2^2 % (10 * k + 7)) - (2^2 % (10 * k + 5)) - (2^6 % (10 * k + 3)) + (2^8 % (10 * k + 1)) - (1 % (4 * k + 3)) - (2^5 % (4 * k + 1))) -- -- Borwin's Quadradic Alogrithm 1985 funPi5 :: forall es. (PositC es, PositC (Next es)) => Posit es funPi5 = recip $ go 0 0 1 (6 - 4 * sqrt 2) (sqrt 2 - 1) where go :: Posit es -> Posit es -> Natural -> Posit es -> Posit es -> Posit es go !prevA !prevY !n a y | prevA == a = a | prevY == y = a | otherwise = let f = (1 - y^4)**(1/4) y' = (1 - f) / (1 + f) a' = a * (1 + y')^4 - 2^(2 * n + 1) * y' * (1 + y' + y'^2) in if n == 3 then a' else go a y (n+1) (trace ("A: " ++ show a') a') (trace ("Y: " ++ show y') y') -- -- 3.14159265358979323846264338327950288419716939937510582097494459231 -- ULP: -97 -- Borwin's Cubic Algirthm funPi6 :: forall es. (PositC es, PositC (Next es)) => Posit es funPi6 = recip $ go 0 0 1 (1/3) ((sqrt 3 - 1) / 2) where go :: Posit es -> Posit es -> Natural -> Posit es -> Posit es -> Posit es go !prevA !prevS !n !a !s | prevA == a = a | prevS == s = a | otherwise = let r = 3 / (1 + 2 * (1 - s^3)**(1/3)) s'= (r - 1) / 2 a'= r^2 * a - 3^(n-1) * (r^2 - 1) in if n == 4 then a' else go a s (n+1) a' s' -- 3.14159265358979323846264338327950288419716939937510582097494459231 -- ULP: 216 -- -- -- -- calculate exp, its most accurate near zero -- use the Nested Series of Jan J Tuma funExpTuma :: Posit256 -> Posit256 funExpTuma NaR = NaR funExpTuma 0 = 1 funExpTuma z = go 57 1 -- was 66 where go :: Natural -> Posit256 -> Posit256 go !k !acc | k == 0 = acc | otherwise = go (k-1) (1 + (z / fromIntegral k) * acc) -- -- -- Interestingly enough, wikipedia defines two alternative solutions -- for the Shannon Wavelet, eventhough there are infinite solutions -- where the functions are equal, they are not equal. It a class of -- functions with the charicteristic of being a band pass filter in the -- frequency space. -- Shannon wavelet funPsiSha1 :: Posit256 -> Posit256 funPsiSha1 NaR = NaR funPsiSha1 t = 2 * sinc (2 * t) - sinc t -- -- Shannon wavelet funPsiSha2 :: Posit256 -> Posit256 funPsiSha2 NaR = NaR funPsiSha2 t = sinc (t/2) * cos (3*pi*t/2) -- -- Shannon wavelet, same as funPsiSha1 but with a factor of pi, with the -- Law: funPsiSha1.(pi*) === funPsiSha3 -- or : funPsiSha1 === funpsiSha3.(/pi) -- Posit256 seems to hold to a few ULP funPsiSha3 :: Posit256 -> Posit256 funPsiSha3 NaR = NaR funPsiSha3 0 = 1 -- Why the hell not! funPsiSha3 t = let pit = pi * t invpit = recip pit in invpit * (sin (2 * pit) - sin pit) -- -- -- Using the CORDIC domain reduction and some approximation function funLogDomainReduction :: (Posit256 -> Posit256) -> Posit256 -> Posit256 funLogDomainReduction _ NaR = NaR funLogDomainReduction _ 1 = 0 funLogDomainReduction f x | x <= 0 = NaR | otherwise = f sig + (fromIntegral ex * lnOf2) where (ex, sig) = (int * fromIntegral (2^(exponentSize @V_3_2)) + fromIntegral nat + 1, fromRational rat / 2) -- move significand range from 1,2 to 0.5,1 (_,int,nat,rat) = (posit2TupPosit @V_3_2).toRational $ x -- sign should always be positive -- -- Use the constant, for performance lnOf2 :: PositC es => Posit es lnOf2 = 0.6931471805599453094172321214581765680755001343602552541206800094933936219696947156058633269964186875420014810205706857336855202 -- -- -- calculate exp, its most accurate near zero -- sum k=0 to k=inf of the terms, iterate until a fixed point is reached funExpTaylor :: Posit256 -> Posit256 funExpTaylor NaR = NaR funExpTaylor 0 = 1 funExpTaylor z = go 0 0 where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc -- if x == x + dx then terminate and return x | otherwise = go (k+1) (acc + term k) term :: Natural -> Posit256 term k = (z^k) / (fromIntegral.fac $ k) -- -- -- funExp2 :: (Posit256 -> Posit256) -> Posit256 -> Posit256 funExp2 _ NaR = NaR funExp2 _ 0 = 1 funExp2 f x | x < 0 = recip.funExp2 f.negate $ x -- always calculate the positive method | otherwise = case properFraction x of (int,rem) -> fromIntegral (2^int) * f (lnOf2 * rem) funGammaSeriesFused :: forall es. (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaSeriesFused z = sqrt(2 * pi) * (z**(z - 0.5)) * exp (negate z) * (1 + series) where series :: Posit es series = fsumL $ zipWith (*) [fromRational (a % b) | (a,b) <- zip a001163 a001164] [recip $ z^n | n <- [1..len]] -- zipWith (\x y -> ) a001163 a001164 lenA = length a001163 lenB = length a001164 len = if lenA == lenB then lenA else error "Seiries Numerator and Denominator do not have the same length." -- -- a001163 :: [Integer] -- Numerator a001163 = [1, 1, -139, -571, 163879, 5246819, -534703531, -4483131259, 432261921612371, 6232523202521089, -25834629665134204969, -1579029138854919086429, 746590869962651602203151, 1511513601028097903631961, -8849272268392873147705987190261, -142801712490607530608130701097701] a001164 :: [Integer] -- Denominator a001164 = [12, 288, 51840, 2488320, 209018880, 75246796800, 902961561600, 86684309913600, 514904800886784000, 86504006548979712000, 13494625021640835072000, 9716130015581401251840000, 116593560186976815022080000, 2798245444487443560529920000, 299692087104605205332754432000000, 57540880724084199423888850944000000] -- -- natural log with log phi acurate to 9 ULP funLogTaylor :: Posit256 -> Posit256 funLogTaylor NaR = NaR funLogTaylor 1 = 0 funLogTaylor x | x <= 0 = NaR funLogTaylor x | x <= 2 = go 1 0 | otherwise = error "The funLogTaylor algorithm is being used improperly" where go :: Natural -> Posit256 -> Posit256 go !k !acc | acc == (acc + term k) = acc | otherwise = go (k + 1) (acc + term k) term :: Natural -> Posit256 term k = (-1)^(k+1) * (x - 1)^k / fromIntegral k -- natural log the Jan J Tuma way funLogTuma :: Posit256 -> Posit256 funLogTuma NaR = NaR funLogTuma 1 = 0 -- domain reduced input is [0.5,1) and/or , where funLogTuma 1 = 0 funLogTuma x | x <= 0 = NaR -- zero and less than zero is NaR funLogTuma x = go 242 1 where xM1 = x - 1 -- now [-0.5, 0) go :: Natural -> Posit256 -> Posit256 go !k !acc | k == 0 = xM1 * acc | otherwise = go (k-1) (recip (fromIntegral k) - xM1 * acc) -- -- funGammaRamanujan :: (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaRamanujan z = sqrt pi * (x / exp 1)**x * (8*x^3 + 4*x^2 + x + (1/30))**(1/6) where x = z - 1 -- -- funGammaCalc :: (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaCalc z = sqrt (2*pi / z) * ((z / exp 1) * sqrt (z * sinh (recip z) + recip (810 * z^6)))**z funGammaNemes :: (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaNemes z = sqrt (2*pi / z) * (recip (exp 1) * (z + recip (12 * z - recip (10 * z))))**z funGammaYang :: (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaYang z = sqrt (2 * pi * x) * (x / exp 1)**x * (x * sinh (recip x))**(x/2) * exp (fromRational (7 % 324) * recip (x^3 * (35 * x^2 + 33))) where x = z - 1 funGammaChen :: (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaChen z = sqrt (2 * pi * x) * (x / exp 1)**x * (1 + recip (12*x^3 + (24/7)*x - 0.5))**(x^2 + fromRational (53 % 210)) where x = z - 1 funGammaXminus1 :: (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaXminus1 x = go (x - 1) where go z = sqrt (2 * pi) * exp z ** (negate z) * z ** (z + 0.5) {- funGammaInfProd :: Posit es -> Posit es funGammaInfProd funGammaViaInv :: Posit es -> Posit es funGammaViaInv -} {- funGammaViaLngamma :: forall es. (PositC es, PositC (Next es)) => Posit es -> Posit es funGammaViaLngamma z = exp $ lngamma where lngamma :: Posit es lngamma = negate eulersConstant * z - log z + go 0 1 go :: Posit es -> Integer -> Posit es go NaR _ = NaR go prev k | prev == prev + next k = prev | otherwise = go (trace ("Next: " ++ show (prev + next k)) (prev + next k)) (k+1) next :: Integer -> Posit es next k = z / fromIntegral k - (log $ 1 + z / fromIntegral k) eulersConstant :: PositC es => Posit es eulersConstant = 0.57721566490153286060651209008240243104215933593992 -} fac :: Natural -> Natural fac 0 = 1 fac n = n * fac (n - 1) --