{-# LANGUAGE Safe, PatternGuards #-} {-| This module implements a decision procedure for quantifier-free linear arithmetic. The algorithm is based on the following paper: An Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic by Sergey Berezin, Vijay Ganesh, and David L. Dill -} module Data.Integer.SAT ( PropSet , noProps , checkSat , assert , Prop(..) , Expr(..) , BoundType(..) , getExprBound , getExprRange , Name , toName , fromName ) where import Data.Map (Map) import qualified Data.Map as Map import Data.List(partition) import Data.Maybe(maybeToList,fromMaybe,mapMaybe) import Control.Applicative(Applicative(..), (<$>)) import Control.Monad(liftM,ap,MonadPlus(..),msum,guard) import Text.PrettyPrint(Doc,(<+>), (<>), integer, int, hsep, text) infixr 2 :|| infixr 3 :&& infix 4 :==, :/=, :<, :<=, :>, :>= infixl 6 :+, :- infixl 7 :* -------------------------------------------------------------------------------- -- Solver interface -- | A collection of propositions. newtype PropSet = State (Answer RW) deriving Show -- | An empty collection of propositions. noProps :: PropSet noProps = State $ return initRW -- | Add a new proposition to an existing collection. assert :: Prop -> PropSet -> PropSet assert p (State rws) = State $ fmap snd $ m =<< rws where S m = prop p -- | Extract a model from a consistent set of propositions. -- Returns 'Nothing' if the assertions have no model. -- If a variable does not appear in the assignment, then it is 0 (?). checkSat :: PropSet -> Maybe [(Int,Integer)] checkSat (State m) = go m where go None = mzero go (One rw) = return [ (x,v) | (UserName x, v) <- iModel (inerts rw) ] go (Choice m1 m2) = mplus (go m1) (go m2) -- | Computes bounds on the expression that are compatible with the model. -- Returns `Nothing` if the bound is not known. getExprBound :: BoundType -> Expr -> PropSet -> Maybe Integer getExprBound bt e (State s) = do let S m = expr e check (t,s1) = iTermBound bt t (inerts s1) bs <- mapM check $ toList $ s >>= m case bs of [] -> Nothing _ -> Just (maximum bs) -- | Compute the range of possible values for an expression. -- Returns `Nothing` if the bound is not known. getExprRange :: Expr -> PropSet -> Maybe [Integer] getExprRange e (State s) = do let S m = expr e check (t,s1) = do l <- iTermBound Lower t (inerts s1) u <- iTermBound Upper t (inerts s1) return (l,u) bs <- mapM check $ toList $ s >>= m case bs of [] -> Nothing _ -> let (ls,us) = unzip bs in Just [ x | x <- [ minimum ls .. maximum us ] ] -- | The type of proposition. data Prop = PTrue | PFalse | Prop :|| Prop | Prop :&& Prop | Not Prop | Expr :== Expr | Expr :/= Expr | Expr :< Expr | Expr :> Expr | Expr :<= Expr | Expr :>= Expr deriving (Read,Show) -- | The type of integer expressions. -- Variable names must be non-negative. data Expr = Expr :+ Expr -- ^ Addition | Expr :- Expr -- ^ Subtraction | Integer :* Expr -- ^ Multiplication by a constant | Negate Expr -- ^ Negation | Var Name -- ^ Variable | K Integer -- ^ Constant | If Prop Expr Expr -- ^ A conditional expression | Div Expr Integer -- ^ Division, rounds down | Mod Expr Integer -- ^ Non-negative remainder deriving (Read,Show) prop :: Prop -> S () prop PTrue = return () prop PFalse = mzero prop (p1 :|| p2) = prop p1 `mplus` prop p2 prop (p1 :&& p2) = prop p1 >> prop p2 prop (Not p) = prop (neg p) where neg PTrue = PFalse neg PFalse = PTrue neg (p1 :&& p2) = neg p1 :|| neg p2 neg (p1 :|| p2) = neg p1 :&& neg p2 neg (Not q) = q neg (e1 :== e2) = e1 :/= e2 neg (e1 :/= e2) = e1 :== e2 neg (e1 :< e2) = e1 :>= e2 neg (e1 :<= e2) = e1 :> e2 neg (e1 :> e2) = e1 :<= e2 neg (e1 :>= e2) = e1 :< e2 prop (e1 :== e2) = do t1 <- expr e1 t2 <- expr e2 enqAndGo qZeroTerms (t1 |-| t2) prop (e1 :/= e2) = do t1 <- expr e1 t2 <- expr e2 let t = t1 |-| t2 enqAndGo qNegTerms t `mplus` enqAndGo qNegTerms (tNeg t) prop (e1 :< e2) = do t1 <- expr e1 t2 <- expr e2 enqAndGo qNegTerms (t1 |-| t2) prop (e1 :<= e2) = do t1 <- expr e1 t2 <- expr e2 let t = t1 |-| t2 enqAndGo qZeroTerms t `mplus` enqAndGo qNegTerms t prop (e1 :> e2) = prop (e2 :< e1) prop (e1 :>= e2) = prop (e2 :<= e1) expr :: Expr -> S Term expr (e1 :+ e2) = (|+|) <$> expr e1 <*> expr e2 expr (e1 :- e2) = (|-|) <$> expr e1 <*> expr e2 expr (k :* e2) = (k |*|) <$> expr e2 expr (Negate e) = tNeg <$> expr e expr (Var x) = pure (tVar x) expr (K x) = pure (tConst x) expr (If p e1 e2) = do x <- newVar prop (p :&& Var x :== e1 :|| Not p :&& Var x :== e2) return (tVar x) expr (Div e k) = fmap fst $ exprDivMod e k expr (Mod e k) = fmap snd $ exprDivMod e k exprDivMod :: Expr -> Integer -> S (Term,Term) exprDivMod e k = do guard (k /= 0) -- Always unsat q <- newVar r <- newVar let er = Var r prop (k :* Var q :+ er :== e :&& er :< K k :&& K 0 :<= er) return (tVar q, tVar r) -------------------------------------------------------------------------------- data RW = RW { nameSource :: !Int , todo :: WorkQ , inerts :: Inerts } deriving Show initRW :: RW initRW = RW { nameSource = 0, todo = qEmpty, inerts = iNone } solveAll :: S () solveAll = do mbEq <- getWork qZeroTerms case mbEq of Just p -> solveIs0 p >> solveAll Nothing -> do mbLt <- getWork qNegTerms case mbLt of Just p -> solveIsNeg p >> solveAll Nothing -> return () -------------------------------------------------------------------------------- -- The work queue data WorkQ = WorkQ { zeroTerms :: [Term] -- ^ t == 0 , negTerms :: [Term] -- ^ t < 0 } deriving Show qEmpty :: WorkQ qEmpty = WorkQ { zeroTerms = [], negTerms = [] } qLet :: Name -> Term -> WorkQ -> WorkQ qLet x t q = WorkQ { zeroTerms = map (tLet x t) (zeroTerms q) , negTerms = map (tLet x t) (negTerms q) } type Field t = (WorkQ -> [t], [t] -> WorkQ -> WorkQ) qZeroTerms :: Field Term qZeroTerms = (zeroTerms, \a q -> q { zeroTerms = a }) qNegTerms :: Field Term qNegTerms = (negTerms, \a q -> q { negTerms = a }) -------------------------------------------------------------------------------- -- Constraints and Bound on Variables ctLt :: Term -> Term -> Term ctLt t1 t2 = t1 |-| t2 ctEq :: Term -> Term -> Term ctEq t1 t2 = t1 |-| t2 data Bound = Bound Integer Term -- ^ The integer is strictly positive deriving Show data BoundType = Lower | Upper deriving Show toCt :: BoundType -> Name -> Bound -> Term toCt Lower x (Bound c t) = ctLt t (c |*| tVar x) toCt Upper x (Bound c t) = ctLt (c |*| tVar x) t -------------------------------------------------------------------------------- -- Inert set -- | The inert contains the solver state on one possible path. data Inerts = Inerts { bounds :: NameMap ([Bound],[Bound]) -- ^ Known lower and upper bounds for variables. -- Each bound @(c,t)@ in the first list asserts that @t < c * x@ -- Each bound @(c,t)@ in the second list asserts that @c * x < t@ , solved :: NameMap Term -- ^ Definitions for resolved variables. -- These form an idempotent substitution. } deriving Show -- | An empty inert set. iNone :: Inerts iNone = Inerts { bounds = Map.empty , solved = Map.empty } -- | Rewrite a term using the definitions from an inert set. iApSubst :: Inerts -> Term -> Term iApSubst i t = foldr apS t $ Map.toList $ solved i where apS (x,t1) t2 = tLet x t1 t2 -- | Add a definition. Upper and lower bound constraints that mention -- the variable are "kicked-out" so that they can be reinserted in the -- context of the new knowledge. -- -- * Assumes substitution has already been applied. -- -- * The kicked-out constraints are NOT rewritten, this happens -- when they get inserted in the work queue. iSolved :: Name -> Term -> Inerts -> ([Term], Inerts) iSolved x t i = ( kickedOut , Inerts { bounds = otherBounds , solved = Map.insert x t $ Map.map (tLet x t) $ solved i } ) where (kickedOut, otherBounds) = -- First, we eliminate all entries for `x` let (mb, mp1) = Map.updateLookupWithKey (\_ _ -> Nothing) x (bounds i) -- Next, we elminate all constraints that mentiond `x` in bounds mp2 = Map.mapWithKey extractBounds mp1 in ( [ ct | (lbs,ubs) <- maybeToList mb , ct <- map (toCt Lower x) lbs ++ map (toCt Upper x) ubs ] ++ [ ct | (_,cts) <- Map.elems mp2, ct <- cts ] , fmap fst mp2 ) extractBounds y (lbs,ubs) = let (lbsStay, lbsKick) = partition stay lbs (ubsStay, ubsKick) = partition stay ubs in ( (lbsStay,ubsStay) , map (toCt Lower y) lbsKick ++ map (toCt Upper y) ubsKick ) stay (Bound _ bnd) = not (tHasVar x bnd) -- Given a list of lower (resp. upper) bounds, compute the least (resp. largest) -- value that satisfies them all. iPickBounded :: BoundType -> [Bound] -> Maybe Integer iPickBounded _ [] = Nothing iPickBounded bt bs = do xs <- mapM (normBound bt) bs return $ case bt of Lower -> maximum xs + 1 Upper -> minimum xs - 1 where normBound Lower (Bound c t) = do k <- isConst t return (div (k + c - 1) c) normBound Upper (Bound c t) = do k <- isConst t return (div k c) -- | The largest (resp. least) upper (resp. lower) bound on a term -- that will satisfy the model iTermBound :: BoundType -> Term -> Inerts -> Maybe Integer iTermBound bt (T k xs) is = do ks <- mapM summand (Map.toList xs) return $ sum $ k : ks where summand (x,c) = fmap (c *) (iVarBound (newBt c) x is) newBt c = if c > 0 then bt else case bt of Lower -> Upper Upper -> Lower -- | The largest (resp. least) upper (resp. lower) bound on a variable -- that will satisfy the model. iVarBound :: BoundType -> Name -> Inerts -> Maybe Integer iVarBound bt x is | Just t <- Map.lookup x (solved is) = iTermBound bt t is iVarBound bt x is = do both <- Map.lookup x (bounds is) case mapMaybe fromBound (chooseBounds both) of [] -> Nothing bs -> return (combineBounds bs) where fromBound (Bound c t) = fmap (scaleBound c) (iTermBound bt t is) combineBounds = case bt of Upper -> minimum Lower -> maximum chooseBounds = case bt of Upper -> snd Lower -> fst scaleBound c b = case bt of Upper -> div (b-1) c Lower -> div b c + 1 iModel :: Inerts -> [(Name,Integer)] iModel i = goBounds [] (bounds i) where goBounds su mp = case Map.maxViewWithKey mp of Nothing -> goEqs su $ Map.toList $ solved i Just ((x,(lbs0,ubs0)), mp1) -> let lbs = [ Bound c (tLetNums su t) | Bound c t <- lbs0 ] ubs = [ Bound c (tLetNums su t) | Bound c t <- ubs0 ] sln = fromMaybe 0 $ mplus (iPickBounded Lower lbs) (iPickBounded Upper ubs) in goBounds ((x,sln) : su) mp1 goEqs su [] = su goEqs su ((x,t) : more) = let t1 = tLetNums su t vs = tVarList t1 su1 = [ (v,0) | v <- vs ] ++ (x,tConstPart t1) : su in goEqs su1 more -------------------------------------------------------------------------------- -- Solving constraints -- | Solve a constraint if the form @t = 0@. -- Assumes substitution has already been applied. solveIs0 :: Term -> S () solveIs0 t -- A == 0 | Just a <- isConst t = guard (a == 0) -- A + B * x = 0 | Just (a,b,x) <- tIsOneVar t = case divMod (-a) b of (q,0) -> addDef x (tConst q) _ -> mzero -- x + S = 0 | Just (xc,x,s) <- tGetSimpleCoeff t = addDef x (if xc > 0 then tNeg s else s) -- A * S = 0 | Just (_, s) <- tFactor t = addWork qZeroTerms s -- See Section 3.1 of paper for details. -- We obtain an equivalent formulation but with smaller coefficients. | Just (ak,xk,s) <- tLeastAbsCoeff t = do let m = abs ak + 1 v <- newVar let sgn = signum ak soln = (negate sgn * m) |*| tVar v |+| tMapCoeff (\c -> sgn * modulus c m) s addDef xk soln let upd i = div (2*i + m) (2*m) + modulus i m addWork qZeroTerms (negate (abs ak) |*| tVar v |+| tMapCoeff upd s) | otherwise = error "solveIs0: unreachable" modulus :: Integer -> Integer -> Integer modulus a m = a - m * div (2 * a + m) (2 * m) -- | Solve a constraint of the form @t < 0@. -- Assumes that substitution has been applied solveIsNeg :: Term -> S () solveIsNeg t -- A < 0 | Just a <- isConst t = guard (a < 0) -- A * S < 0 |Just (_,s) <- tFactor t = addWork qNegTerms s -- See Section 5.1 of the paper | Just (xc,x,s) <- tLeastVar t = do ctrs <- if xc < 0 -- -XC*x + S < 0 -- S < XC*x then do ubs <- getBounds Upper x let b = negate xc beta = s addBound Lower x (Bound b beta) return [ (a,alpha,b,beta) | Bound a alpha <- ubs ] -- XC*x + S < 0 -- XC*x < -S else do lbs <- getBounds Lower x let a = xc alpha = tNeg s addBound Upper x (Bound a alpha) return [ (a,alpha,b,beta) | Bound b beta <- lbs ] -- See Note [Shadows] mapM_ (\(a,alpha,b,beta) -> do let real = ctLt (a |*| beta) (b |*| alpha) dark = ctLt (tConst (a * b)) (b |*| alpha |-| a |*| beta) gray = [ ctEq (b |*| tVar x) (tConst i |+| beta) | i <- [ 1 .. b - 1 ] ] addWork qNegTerms real msum (addWork qNegTerms dark : map (addWork qZeroTerms) gray) ) ctrs | otherwise = error "solveIsNeg: unreachable" {- Note [Shadows] P: beta < b * x Q: a * x < alpha real: a * beta < b * alpha beta < b * x -- from P a * beta < a * b * x -- (a *) a * beta < b * alpha -- comm. and Q dark: b * alpha - a * beta > a * b gray: b * x = beta + 1 \/ b * x = beta + 2 \/ ... b * x = beta + (b-1) We stop at @b - 1@ because if: > b * x >= beta + b > a * b * x >= a * (beta + b) -- (a *) > a * b * x >= a * beta + a * b -- distrib. > b * alpha > a * beta + a * b -- comm. and Q > b * alpha - a * beta > a * b -- subtract (a * beta) which is covered by the dark shadow. -} -------------------------------------------------------------------------------- -- Monads data Answer a = None | One a | Choice (Answer a) (Answer a) deriving Show toList :: Answer a -> [a] toList a = go a [] where go (Choice xs ys) zs = go xs (go ys zs) go (One x) xs = x : xs go None xs = xs instance Monad Answer where return a = One a fail _ = None None >>= _ = None One a >>= k = k a Choice m1 m2 >>= k = mplus (m1 >>= k) (m2 >>= k) instance MonadPlus Answer where mzero = None mplus None x = x -- mplus (Choice x y) z = mplus x (mplus y z) mplus x y = Choice x y instance Functor Answer where fmap _ None = None fmap f (One x) = One (f x) fmap f (Choice x1 x2) = Choice (fmap f x1) (fmap f x2) instance Applicative Answer where pure = return (<*>) = ap newtype S a = S (RW -> Answer (a,RW)) instance Monad S where return a = S $ \s -> return (a,s) S m >>= k = S $ \s -> do (a,s1) <- m s let S m1 = k a m1 s1 instance MonadPlus S where mzero = S $ \_ -> mzero mplus (S m1) (S m2) = S $ \s -> mplus (m1 s) (m2 s) instance Functor S where fmap = liftM instance Applicative S where pure = return (<*>) = ap updS :: (RW -> (a,RW)) -> S a updS f = S $ \s -> return (f s) updS_ :: (RW -> RW) -> S () updS_ f = updS $ \rw -> ((),f rw) get :: (RW -> a) -> S a get f = updS $ \rw -> (f rw, rw) newVar :: S Name newVar = updS $ \rw -> ( SysName (nameSource rw) , rw { nameSource = nameSource rw + 1 } ) -- | Try to get a new item from the work queue. getWork :: Field t -> S (Maybe t) getWork (getF,setF) = updS $ \rw -> let work = todo rw in case getF work of [] -> (Nothing, rw) t : ts -> (Just t, rw { todo = setF ts work }) -- | Add a new item to the work queue. addWork :: Field t -> t -> S () addWork (getF,setF) t = updS_ $ \rw -> let work = todo rw in rw { todo = setF (t : getF work) work } -- | Get lower ('fst'), or upper ('snd') bounds for a variable. getBounds :: BoundType -> Name -> S [Bound] getBounds f x = get $ \rw -> case Map.lookup x $ bounds $ inerts rw of Nothing -> [] Just bs -> case f of Lower -> fst bs Upper -> snd bs addBound :: BoundType -> Name -> Bound -> S () addBound bt x b = updS_ $ \rw -> let i = inerts rw entry = case bt of Lower -> ([b],[]) Upper -> ([],[b]) jn (newL,newU) (oldL,oldU) = (newL++oldL, newU++oldU) in rw { inerts = i { bounds = Map.insertWith jn x entry (bounds i) }} -- | Add a new definition. -- Assumes substitution has already been applied addDef :: Name -> Term -> S () addDef x t = updS_ $ \rw -> let (newWork,newInerts) = iSolved x t (inerts rw) in rw { inerts = newInerts , todo = qLet x t $ let work = todo rw in work { negTerms = newWork ++ negTerms work } } enqAndGo :: Field Term -> Term -> S () enqAndGo q t = do i <- get inerts addWork q $ iApSubst i t solveAll -------------------------------------------------------------------------------- data Name = UserName !Int | SysName !Int deriving (Read,Show,Eq,Ord) ppName :: Name -> Doc ppName (UserName x) = text "u" <> int x ppName (SysName x) = text "s" <> int x toName :: Int -> Name toName = UserName fromName :: Name -> Maybe Int fromName (UserName x) = Just x fromName (SysName _) = Nothing type NameMap = Map Name -- | The type of terms. The integer is the constant part of the term, -- and the `Map` maps variables (represented by @Int@ to their coefficients). -- The term is a sum of its parts. -- INVARIANT: the `Map` does not map anything to 0. data Term = T !Integer (NameMap Integer) deriving (Eq,Ord) infixl 6 |+|, |-| infixr 7 |*| -- | A constant term. tConst :: Integer -> Term tConst k = T k Map.empty -- | Construct a term with a single variable. tVar :: Name -> Term tVar x = T 0 (Map.singleton x 1) (|+|) :: Term -> Term -> Term T n1 m1 |+| T n2 m2 = T (n1 + n2) $ if Map.null m1 then m2 else if Map.null m2 then m1 else Map.filter (/= 0) $ Map.unionWith (+) m1 m2 (|*|) :: Integer -> Term -> Term 0 |*| _ = tConst 0 1 |*| t = t k |*| T n m = T (k * n) (fmap (k *) m) tNeg :: Term -> Term tNeg t = (-1) |*| t (|-|) :: Term -> Term -> Term t1 |-| t2 = t1 |+| tNeg t2 -- | Replace a variable with a term. tLet :: Name -> Term -> Term -> Term tLet x t1 t2 = let (a,t) = tSplitVar x t2 in a |*| t1 |+| t -- | Replace a variable with a constant. tLetNum :: Name -> Integer -> Term -> Term tLetNum x k t = let (c,T n m) = tSplitVar x t in T (c * k + n) m -- | Replace the given variables with constants. tLetNums :: [(Name,Integer)] -> Term -> Term tLetNums xs t = foldr (\(x,i) t1 -> tLetNum x i t1) t xs instance Show Term where showsPrec c t = showsPrec c (show (ppTerm t)) ppTerm :: Term -> Doc ppTerm (T k m) = case Map.toList m of [] -> integer k xs | k /= 0 -> hsep (integer k : map ppProd xs) x : xs -> hsep (ppFst x : map ppProd xs) where ppFst (x,1) = ppName x ppFst (x,-1) = text "-" <> ppName x ppFst (x,n) = ppMul n x ppProd (x,1) = text "+" <+> ppName x ppProd (x,-1) = text "-" <+> ppName x ppProd (x,n) | n > 0 = text "+" <+> ppMul n x | otherwise = text "-" <+> ppMul (abs n) x ppMul n x = integer n <+> text "*" <+> ppName x -- | Remove a variable from the term, and return its coefficient. -- If the variable is not present in the term, the coefficient is 0. tSplitVar :: Name -> Term -> (Integer, Term) tSplitVar x t@(T n m) = case Map.updateLookupWithKey (\_ _ -> Nothing) x m of (Nothing,_) -> (0,t) (Just k,m1) -> (k, T n m1) -- | Does the term contain this varibale? tHasVar :: Name -> Term -> Bool tHasVar x (T _ m) = Map.member x m -- | Is this terms just an integer. isConst :: Term -> Maybe Integer isConst (T n m) | Map.null m = Just n | otherwise = Nothing tConstPart :: Term -> Integer tConstPart (T n _) = n -- | Returns: @Just (a, b, x)@ if the term is the form: @a + b * x@ tIsOneVar :: Term -> Maybe (Integer, Integer, Name) tIsOneVar (T a m) = case Map.toList m of [ (x,b) ] -> Just (a, b, x) _ -> Nothing -- | Spots terms that contain variables with unit coefficients -- (i.e., of the form @x + t@ or @t - x@). -- Returns (coeff, var, rest of term) tGetSimpleCoeff :: Term -> Maybe (Integer, Name, Term) tGetSimpleCoeff (T a m) = do let (m1,m2) = Map.partition (\x -> x == 1 || x == -1) m ((x,xc), m3) <- Map.minViewWithKey m1 return (xc, x, T a (Map.union m3 m2)) tVarList :: Term -> [Name] tVarList (T _ m) = Map.keys m -- | Try to factor-out a common consant (> 1) from a term. -- For example, @2 + 4x@ becomes @2 * (1 + 2x)@. tFactor :: Term -> Maybe (Integer, Term) tFactor (T c m) = do d <- common (c : Map.elems m) return (d, T (div c d) (fmap (`div` d) m)) where common :: [Integer] -> Maybe Integer common [] = Nothing common [x] = Just x common (x : y : zs) = case gcd x y of 1 -> Nothing n -> common (n : zs) -- | Extract a variable with a coefficient whose absolute value is minimal. tLeastAbsCoeff :: Term -> Maybe (Integer, Name, Term) tLeastAbsCoeff (T c m) = do (xc,x,m1) <- Map.foldWithKey step Nothing m return (xc, x, T c m1) where step x xc Nothing = Just (xc, x, Map.delete x m) step x xc (Just (yc,_,_)) | abs xc < abs yc = Just (xc, x, Map.delete x m) step _ _ it = it -- | Extract the least variable from a term tLeastVar :: Term -> Maybe (Integer, Name, Term) tLeastVar (T c m) = do ((x,xc), m1) <- Map.minViewWithKey m return (xc, x, T c m1) -- | Apply a function to all coefficients, including the constnat tMapCoeff :: (Integer -> Integer) -> Term -> Term tMapCoeff f (T c m) = T (f c) (fmap f m)