{-# LANGUAGE CPP #-} {-# LANGUAGE ScopedTypeVariables #-} #if HAVE_QUANTIFIED_CONSTRAINTS {-# LANGUAGE QuantifiedConstraints #-} #endif {-# OPTIONS_GHC -Wall #-} module Test.QuickCheck.Classes.Monad ( #if HAVE_UNARY_LAWS monadLaws #endif ) where import Control.Applicative import Test.QuickCheck hiding ((.&.)) import Control.Monad (ap) #if HAVE_UNARY_LAWS import Test.QuickCheck.Arbitrary (Arbitrary1(..)) import Data.Functor.Classes (Eq1,Show1) #endif import Test.QuickCheck.Property (Property) import Test.QuickCheck.Classes.Common #if HAVE_UNARY_LAWS import Test.QuickCheck.Classes.Compat (eq1) #endif #if HAVE_UNARY_LAWS -- | Tests the following monadic properties: -- -- [/Left Identity/] -- @'return' a '>>=' k ≡ k a@ -- [/Right Identity/] -- @m '>>=' 'return' ≡ m@ -- [/Associativity/] -- @m '>>=' (\\x -> k x '>>=' h) ≡ (m '>>=' k) '>>=' h@ -- [/Return/] -- @'pure' ≡ 'return'@ -- [/Ap/] -- @('<*>') ≡ 'ap'@ monadLaws :: #if HAVE_QUANTIFIED_CONSTRAINTS (Monad f, Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a)) #else (Monad f, Applicative f, Eq1 f, Show1 f, Arbitrary1 f) #endif => proxy f -> Laws monadLaws p = Laws "Monad" [ ("Left Identity", monadLeftIdentity p) , ("Right Identity", monadRightIdentity p) , ("Associativity", monadAssociativity p) , ("Return", monadReturn p) , ("Ap", monadAp p) ] monadLeftIdentity :: forall proxy f. #if HAVE_QUANTIFIED_CONSTRAINTS (Monad f, Functor f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a)) #else (Monad f, Functor f, Eq1 f, Show1 f, Arbitrary1 f) #endif => proxy f -> Property monadLeftIdentity _ = property $ \(k' :: LinearEquationM f) (a :: Integer) -> let k = runLinearEquationM k' in eq1 (return a >>= k) (k a) monadRightIdentity :: forall proxy f. #if HAVE_QUANTIFIED_CONSTRAINTS (Monad f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a)) #else (Monad f, Eq1 f, Show1 f, Arbitrary1 f) #endif => proxy f -> Property monadRightIdentity _ = property $ \(Apply (m :: f Integer)) -> eq1 (m >>= return) m monadAssociativity :: forall proxy f. #if HAVE_QUANTIFIED_CONSTRAINTS (Monad f, Functor f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a)) #else (Monad f, Functor f, Eq1 f, Show1 f, Arbitrary1 f) #endif => proxy f -> Property monadAssociativity _ = property $ \(Apply (m :: f Integer)) (k' :: LinearEquationM f) (h' :: LinearEquationM f) -> let k = runLinearEquationM k' h = runLinearEquationM h' in eq1 (m >>= (\x -> k x >>= h)) ((m >>= k) >>= h) monadReturn :: forall proxy f. #if HAVE_QUANTIFIED_CONSTRAINTS (Monad f, Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a)) #else (Monad f, Applicative f, Eq1 f, Show1 f, Arbitrary1 f) #endif => proxy f -> Property monadReturn _ = property $ \(x :: Integer) -> eq1 (return x) (pure x :: f Integer) monadAp :: forall proxy f. #if HAVE_QUANTIFIED_CONSTRAINTS (Monad f, Applicative f, forall a. Eq a => Eq (f a), forall a. Show a => Show (f a), forall a. Arbitrary a => Arbitrary (f a)) #else (Monad f, Applicative f, Eq1 f, Show1 f, Arbitrary1 f) #endif => proxy f -> Property monadAp _ = property $ \(Apply (f' :: f QuadraticEquation)) (Apply (x :: f Integer)) -> let f = fmap runQuadraticEquation f' in eq1 (ap f x) (f <*> x) #endif