{-# LANGUAGE FlexibleInstances #-} -- | -- Functions and instances relating to unification -- module Language.PureScript.TypeChecker.Unify ( freshType , solveType , substituteType , unknownsInType , unifyTypes , unifyRows , replaceVarWithUnknown , replaceTypeWildcards , varIfUnknown ) where import Prelude.Compat import Control.Monad import Control.Monad.Error.Class (MonadError(..)) import Control.Monad.State.Class (MonadState(..), gets, modify) import Control.Monad.Writer.Class (MonadWriter(..)) import Data.List (nub, sort) import qualified Data.Map as M import Language.PureScript.Crash import Language.PureScript.Errors import Language.PureScript.TypeChecker.Monad import Language.PureScript.TypeChecker.Skolems import Language.PureScript.Types -- | Generate a fresh type variable freshType :: (MonadState CheckState m) => m Type freshType = do t <- gets checkNextType modify $ \st -> st { checkNextType = t + 1 } return $ TUnknown t -- | Update the substitution to solve a type constraint solveType :: (MonadError MultipleErrors m, MonadState CheckState m) => Int -> Type -> m () solveType u t = do occursCheck u t modify $ \cs -> cs { checkSubstitution = (checkSubstitution cs) { substType = M.insert u t $ substType $ checkSubstitution cs } } -- | Apply a substitution to a type substituteType :: Substitution -> Type -> Type substituteType sub = everywhereOnTypes go where go (TUnknown u) = case M.lookup u (substType sub) of Nothing -> TUnknown u Just (TUnknown u1) | u1 == u -> TUnknown u1 Just t -> substituteType sub t go other = other -- | Make sure that an unknown does not occur in a type occursCheck :: (MonadError MultipleErrors m) => Int -> Type -> m () occursCheck _ TUnknown{} = return () occursCheck u t = void $ everywhereOnTypesM go t where go (TUnknown u') | u == u' = throwError . errorMessage . InfiniteType $ t go other = return other -- | Compute a list of all unknowns appearing in a type unknownsInType :: Type -> [Int] unknownsInType t = everythingOnTypes (.) go t [] where go :: Type -> [Int] -> [Int] go (TUnknown u) = (u :) go _ = id -- | Unify two types, updating the current substitution unifyTypes :: (MonadError MultipleErrors m, MonadState CheckState m) => Type -> Type -> m () unifyTypes t1 t2 = do sub <- gets checkSubstitution withErrorMessageHint (ErrorUnifyingTypes t1 t2) $ unifyTypes' (substituteType sub t1) (substituteType sub t2) where unifyTypes' (TUnknown u1) (TUnknown u2) | u1 == u2 = return () unifyTypes' (TUnknown u) t = solveType u t unifyTypes' t (TUnknown u) = solveType u t unifyTypes' (ForAll ident1 ty1 sc1) (ForAll ident2 ty2 sc2) = case (sc1, sc2) of (Just sc1', Just sc2') -> do sko <- newSkolemConstant let sk1 = skolemize ident1 sko sc1' Nothing ty1 let sk2 = skolemize ident2 sko sc2' Nothing ty2 sk1 `unifyTypes` sk2 _ -> internalError "unifyTypes: unspecified skolem scope" unifyTypes' (ForAll ident ty1 (Just sc)) ty2 = do sko <- newSkolemConstant let sk = skolemize ident sko sc Nothing ty1 sk `unifyTypes` ty2 unifyTypes' ForAll{} _ = internalError "unifyTypes: unspecified skolem scope" unifyTypes' ty f@ForAll{} = f `unifyTypes` ty unifyTypes' (TypeVar v1) (TypeVar v2) | v1 == v2 = return () unifyTypes' ty1@(TypeConstructor c1) ty2@(TypeConstructor c2) = guardWith (errorMessage (TypesDoNotUnify ty1 ty2)) (c1 == c2) unifyTypes' (TypeLevelString s1) (TypeLevelString s2) | s1 == s2 = return () unifyTypes' (TypeApp t3 t4) (TypeApp t5 t6) = do t3 `unifyTypes` t5 t4 `unifyTypes` t6 unifyTypes' (Skolem _ s1 _ _) (Skolem _ s2 _ _) | s1 == s2 = return () unifyTypes' (KindedType ty1 _) ty2 = ty1 `unifyTypes` ty2 unifyTypes' ty1 (KindedType ty2 _) = ty1 `unifyTypes` ty2 unifyTypes' r1@RCons{} r2 = unifyRows r1 r2 unifyTypes' r1 r2@RCons{} = unifyRows r1 r2 unifyTypes' r1@REmpty r2 = unifyRows r1 r2 unifyTypes' r1 r2@REmpty = unifyRows r1 r2 unifyTypes' ty1@(ConstrainedType _ _) ty2 = throwError . errorMessage $ ConstrainedTypeUnified ty1 ty2 unifyTypes' t3 t4@(ConstrainedType _ _) = unifyTypes' t4 t3 unifyTypes' t3 t4 = throwError . errorMessage $ TypesDoNotUnify t3 t4 -- | -- Unify two rows, updating the current substitution -- -- Common labels are first identified, and unified. Remaining labels and types are unified with a -- trailing row unification variable, if appropriate, otherwise leftover labels result in a unification -- error. -- unifyRows :: forall m. (MonadError MultipleErrors m, MonadState CheckState m) => Type -> Type -> m () unifyRows r1 r2 = let (s1, r1') = rowToList r1 (s2, r2') = rowToList r2 int = [ (t1, t2) | (name, t1) <- s1, (name', t2) <- s2, name == name' ] sd1 = [ (name, t1) | (name, t1) <- s1, name `notElem` map fst s2 ] sd2 = [ (name, t2) | (name, t2) <- s2, name `notElem` map fst s1 ] in do forM_ int (uncurry unifyTypes) unifyRows' sd1 r1' sd2 r2' where unifyRows' :: [(String, Type)] -> Type -> [(String, Type)] -> Type -> m () unifyRows' [] (TUnknown u) sd r = solveType u (rowFromList (sd, r)) unifyRows' sd r [] (TUnknown u) = solveType u (rowFromList (sd, r)) unifyRows' sd1 (TUnknown u1) sd2 (TUnknown u2) = do forM_ sd1 $ \(_, t) -> occursCheck u2 t forM_ sd2 $ \(_, t) -> occursCheck u1 t rest <- freshType solveType u1 (rowFromList (sd2, rest)) solveType u2 (rowFromList (sd1, rest)) unifyRows' [] REmpty [] REmpty = return () unifyRows' [] (TypeVar v1) [] (TypeVar v2) | v1 == v2 = return () unifyRows' [] (Skolem _ s1 _ _) [] (Skolem _ s2 _ _) | s1 == s2 = return () unifyRows' _ _ _ _ = throwError . errorMessage $ TypesDoNotUnify r1 r2 -- | -- Replace a single type variable with a new unification variable -- replaceVarWithUnknown :: (MonadState CheckState m) => String -> Type -> m Type replaceVarWithUnknown ident ty = do tu <- freshType return $ replaceTypeVars ident tu ty -- | -- Replace type wildcards with unknowns -- replaceTypeWildcards :: (MonadWriter MultipleErrors m, MonadState CheckState m) => Type -> m Type replaceTypeWildcards = everywhereOnTypesM replace where replace (TypeWildcard ss) = do t <- freshType ctx <- getLocalContext warnWithPosition ss $ tell . errorMessage $ WildcardInferredType t ctx return t replace other = return other -- | -- Replace outermost unsolved unification variables with named type variables -- varIfUnknown :: Type -> Type varIfUnknown ty = let unks = nub $ unknownsInType ty toName = (:) 't' . show ty' = everywhereOnTypes typeToVar ty typeToVar :: Type -> Type typeToVar (TUnknown u) = TypeVar (toName u) typeToVar t = t in mkForAll (sort . map toName $ unks) ty'