{-# LANGUAGE NamedFieldPuns #-} -- | -- This module implements the type checker -- module Language.PureScript.TypeChecker.Types ( BindingGroupType(..) , typesOf ) where {- The following functions represent the corresponding type checking judgements: infer Synthesize a type for a value check Check a value has a given type checkProperties Check an object with a given type contains specified properties checkFunctionApplication Check a function of a given type returns a value of another type when applied to its arguments -} import Prelude.Compat import Protolude (ordNub) import Control.Arrow (first, second, (***)) import Control.Monad import Control.Monad.Error.Class (MonadError(..)) import Control.Monad.State.Class (MonadState(..), gets) import Control.Monad.Supply.Class (MonadSupply) import Control.Monad.Writer.Class (MonadWriter(..)) import Data.Bifunctor (bimap) import Data.Either (partitionEithers) import Data.Functor (($>)) import Data.List (transpose, (\\), partition, delete) import Data.Maybe (fromMaybe) import Data.Traversable (for) import qualified Data.List.NonEmpty as NEL import qualified Data.Map as M import qualified Data.Set as S import Language.PureScript.AST import Language.PureScript.Crash import Language.PureScript.Environment import Language.PureScript.Errors import Language.PureScript.Kinds import Language.PureScript.Names import Language.PureScript.Traversals import Language.PureScript.TypeChecker.Entailment import Language.PureScript.TypeChecker.Kinds import Language.PureScript.TypeChecker.Monad import Language.PureScript.TypeChecker.Skolems import Language.PureScript.TypeChecker.Subsumption import Language.PureScript.TypeChecker.Synonyms import Language.PureScript.TypeChecker.TypeSearch import Language.PureScript.TypeChecker.Unify import Language.PureScript.Types import Language.PureScript.Label (Label(..)) import Language.PureScript.PSString (PSString) data BindingGroupType = RecursiveBindingGroup | NonRecursiveBindingGroup deriving (Show, Eq, Ord) -- | The result of a successful type check. data TypedValue' = TypedValue' Bool Expr SourceType -- | Convert an type checked value into an expression. tvToExpr :: TypedValue' -> Expr tvToExpr (TypedValue' c e t) = TypedValue c e t -- | Infer the types of multiple mutually-recursive values, and return elaborated values including -- type class dictionaries and type annotations. typesOf :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => BindingGroupType -> ModuleName -> [((SourceAnn, Ident), Expr)] -> m [((SourceAnn, Ident), (Expr, SourceType))] typesOf bindingGroupType moduleName vals = withFreshSubstitution $ do (tys, wInfer) <- capturingSubstitution tidyUp $ do (SplitBindingGroup untyped typed dict, w) <- withoutWarnings $ typeDictionaryForBindingGroup (Just moduleName) vals ds1 <- parU typed $ \e -> withoutWarnings $ checkTypedBindingGroupElement moduleName e dict ds2 <- forM untyped $ \e -> withoutWarnings $ typeForBindingGroupElement e dict return (map (False, ) ds1 ++ map (True, ) ds2, w) inferred <- forM tys $ \(shouldGeneralize, ((sai@((ss, _), ident), (val, ty)), _)) -> do -- Replace type class dictionary placeholders with actual dictionaries (val', unsolved) <- replaceTypeClassDictionaries shouldGeneralize val -- Generalize and constrain the type currentSubst <- gets checkSubstitution let ty' = substituteType currentSubst ty unsolvedTypeVars = ordNub $ unknownsInType ty' generalized = generalize unsolved ty' when shouldGeneralize $ do -- Show the inferred type in a warning tell . errorMessage' ss $ MissingTypeDeclaration ident generalized -- For non-recursive binding groups, can generalize over constraints. -- For recursive binding groups, we throw an error here for now. when (bindingGroupType == RecursiveBindingGroup && not (null unsolved)) . throwError . errorMessage' ss $ CannotGeneralizeRecursiveFunction ident generalized -- Make sure any unsolved type constraints only use type variables which appear -- unknown in the inferred type. forM_ unsolved $ \(_, _, con) -> do -- We need information about functional dependencies, since we allow -- ambiguous types to be inferred if they can be solved by some functional -- dependency. let findClass = fromMaybe (internalError "entails: type class not found in environment") . M.lookup (constraintClass con) TypeClassData{ typeClassDependencies } <- gets (findClass . typeClasses . checkEnv) let solved = foldMap (S.fromList . fdDetermined) typeClassDependencies let constraintTypeVars = ordNub . foldMap (unknownsInType . fst) . filter ((`notElem` solved) . snd) $ zip (constraintArgs con) [0..] when (any (`notElem` unsolvedTypeVars) constraintTypeVars) . throwError . onErrorMessages (replaceTypes currentSubst) . errorMessage' ss $ AmbiguousTypeVariables generalized con -- Check skolem variables did not escape their scope skolemEscapeCheck val' return ((sai, (foldr (Abs . VarBinder nullSourceSpan . (\(x, _, _) -> x)) val' unsolved, generalized)), unsolved) -- Show warnings here, since types in wildcards might have been solved during -- instance resolution (by functional dependencies). finalState <- get let replaceTypes' = replaceTypes (checkSubstitution finalState) runTypeSearch' gen = runTypeSearch (guard gen $> foldMap snd inferred) finalState raisePreviousWarnings gen = (escalateWarningWhen isHoleError . tell . onErrorMessages (runTypeSearch' gen . replaceTypes')) raisePreviousWarnings False wInfer forM_ tys $ \(shouldGeneralize, ((_, (_, _)), w)) -> raisePreviousWarnings shouldGeneralize w return (map fst inferred) where replaceTypes :: Substitution -> ErrorMessage -> ErrorMessage replaceTypes subst = onTypesInErrorMessage (substituteType subst) -- | Run type search to complete any typed hole error messages runTypeSearch :: Maybe [(Ident, InstanceContext, SourceConstraint)] -- ^ Any unsolved constraints which we need to continue to satisfy -> CheckState -- ^ The final type checker state -> ErrorMessage -> ErrorMessage runTypeSearch cons st = \case ErrorMessage hints (HoleInferredType x ty y (Just (TSBefore env))) -> let subst = checkSubstitution st searchResult = onTypeSearchTypes (substituteType subst) (uncurry TSAfter (typeSearch cons env st (substituteType subst ty))) in ErrorMessage hints (HoleInferredType x ty y (Just searchResult)) other -> other -- | Generalize type vars using forall and add inferred constraints generalize unsolved = varIfUnknown . constrain unsolved -- | Add any unsolved constraints constrain cs ty = foldr srcConstrainedType ty (map (\(_, _, x) -> x) cs) -- Apply the substitution that was returned from runUnify to both types and (type-annotated) values tidyUp ts sub = first (map (second (first (second (overTypes (substituteType sub) *** substituteType sub))))) ts isHoleError :: ErrorMessage -> Bool isHoleError (ErrorMessage _ HoleInferredType{}) = True isHoleError _ = False -- | A binding group contains multiple value definitions, some of which are typed -- and some which are not. -- -- This structure breaks down a binding group into typed and untyped parts. data SplitBindingGroup = SplitBindingGroup { _splitBindingGroupUntyped :: [((SourceAnn, Ident), (Expr, SourceType))] -- ^ The untyped expressions , _splitBindingGroupTyped :: [((SourceAnn, Ident), (Expr, SourceType, Bool))] -- ^ The typed expressions, along with their type annotations , _splitBindingGroupNames :: M.Map (Qualified Ident) (SourceType, NameKind, NameVisibility) -- ^ A map containing all expressions and their assigned types (which might be -- fresh unification variables). These will be added to the 'Environment' after -- the binding group is checked, so the value type of the 'Map' is chosen to be -- compatible with the type of 'bindNames'. } -- | This function breaks a binding group down into two sets of declarations: -- those which contain type annotations, and those which don't. -- This function also generates fresh unification variables for the types of -- declarations without type annotations, returned in the 'UntypedData' structure. typeDictionaryForBindingGroup :: (MonadState CheckState m, MonadWriter MultipleErrors m) => Maybe ModuleName -> [((SourceAnn, Ident), Expr)] -> m SplitBindingGroup typeDictionaryForBindingGroup moduleName vals = do -- Filter the typed and untyped declarations and make a map of names to typed declarations. -- Replace type wildcards here so that the resulting dictionary of types contains the -- fully expanded types. let (untyped, typed) = partitionEithers (map splitTypeAnnotation vals) (typedDict, typed') <- fmap unzip . for typed $ \(sai, (expr, ty, checkType)) -> do ty' <- replaceTypeWildcards ty return ((sai, ty'), (sai, (expr, ty', checkType))) -- Create fresh unification variables for the types of untyped declarations (untypedDict, untyped') <- fmap unzip . for untyped $ \(sai, expr) -> do ty <- freshType return ((sai, ty), (sai, (expr, ty))) -- Create the dictionary of all name/type pairs, which will be added to the -- environment during type checking let dict = M.fromList [ (Qualified moduleName ident, (ty, Private, Undefined)) | ((_, ident), ty) <- typedDict <> untypedDict ] return (SplitBindingGroup untyped' typed' dict) where -- | Check if a value contains a type annotation, and if so, separate it -- from the value itself. splitTypeAnnotation :: (a, Expr) -> Either (a, Expr) (a, (Expr, SourceType, Bool)) splitTypeAnnotation (a, TypedValue checkType value ty) = Right (a, (value, ty, checkType)) splitTypeAnnotation (a, PositionedValue pos c value) = bimap (second (PositionedValue pos c)) (second (\(e, t, b) -> (PositionedValue pos c e, t, b))) (splitTypeAnnotation (a, value)) splitTypeAnnotation (a, value) = Left (a, value) -- | Check the type annotation of a typed value in a binding group. checkTypedBindingGroupElement :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => ModuleName -> ((SourceAnn, Ident), (Expr, SourceType, Bool)) -- ^ The identifier we are trying to define, along with the expression and its type annotation -> M.Map (Qualified Ident) (SourceType, NameKind, NameVisibility) -- ^ Names brought into scope in this binding group -> m ((SourceAnn, Ident), (Expr, SourceType)) checkTypedBindingGroupElement mn (ident, (val, ty, checkType)) dict = do -- Kind check (kind, args) <- kindOfWithScopedVars ty checkTypeKind ty kind -- We replace type synonyms _after_ kind-checking, since we don't want type -- synonym expansion to bring type variables into scope. See #2542. ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms $ ty -- Check the type with the new names in scope val' <- if checkType then withScopedTypeVars mn args $ bindNames dict $ check val ty' else return (TypedValue' False val ty') return (ident, (tvToExpr val', ty')) -- | Infer a type for a value in a binding group which lacks an annotation. typeForBindingGroupElement :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => ((SourceAnn, Ident), (Expr, SourceType)) -- ^ The identifier we are trying to define, along with the expression and its assigned type -- (at this point, this should be a unification variable) -> M.Map (Qualified Ident) (SourceType, NameKind, NameVisibility) -- ^ Names brought into scope in this binding group -> m ((SourceAnn, Ident), (Expr, SourceType)) typeForBindingGroupElement (ident, (val, ty)) dict = do -- Infer the type with the new names in scope TypedValue' _ val' ty' <- bindNames dict $ infer val -- Unify the type with the unification variable we chose for this definition unifyTypes ty ty' return (ident, (TypedValue True val' ty', ty')) -- | Check the kind of a type, failing if it is not of kind *. checkTypeKind :: MonadError MultipleErrors m => SourceType -> SourceKind -> m () checkTypeKind ty kind = guardWith (errorMessage (ExpectedType ty kind)) $ isKindType kind -- | Remove any ForAlls and ConstrainedType constructors in a type by introducing new unknowns -- or TypeClassDictionary values. -- -- This is necessary during type checking to avoid unifying a polymorphic type with a -- unification variable. instantiatePolyTypeWithUnknowns :: (MonadState CheckState m, MonadError MultipleErrors m) => Expr -> SourceType -> m (Expr, SourceType) instantiatePolyTypeWithUnknowns val (ForAll _ ident _ ty _) = do ty' <- replaceVarWithUnknown ident ty instantiatePolyTypeWithUnknowns val ty' instantiatePolyTypeWithUnknowns val (ConstrainedType _ con ty) = do dicts <- getTypeClassDictionaries hints <- getHints instantiatePolyTypeWithUnknowns (App val (TypeClassDictionary con dicts hints)) ty instantiatePolyTypeWithUnknowns val ty = return (val, ty) -- | Infer a type for a value, rethrowing any error to provide a more useful error message infer :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> m TypedValue' infer val = withErrorMessageHint (ErrorInferringType val) $ infer' val -- | Infer a type for a value infer' :: forall m . (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> m TypedValue' infer' v@(Literal _ (NumericLiteral (Left _))) = return $ TypedValue' True v tyInt infer' v@(Literal _ (NumericLiteral (Right _))) = return $ TypedValue' True v tyNumber infer' v@(Literal _ (StringLiteral _)) = return $ TypedValue' True v tyString infer' v@(Literal _ (CharLiteral _)) = return $ TypedValue' True v tyChar infer' v@(Literal _ (BooleanLiteral _)) = return $ TypedValue' True v tyBoolean infer' (Literal ss (ArrayLiteral vals)) = do ts <- traverse infer vals els <- freshType ts' <- forM ts $ \(TypedValue' ch val t) -> do (val', t') <- instantiatePolyTypeWithUnknowns val t unifyTypes els t' return (TypedValue ch val' t') return $ TypedValue' True (Literal ss (ArrayLiteral ts')) (srcTypeApp tyArray els) infer' (Literal ss (ObjectLiteral ps)) = do ensureNoDuplicateProperties ps -- We make a special case for Vars in record labels, since these are the -- only types of expressions for which 'infer' can return a polymorphic type. -- They need to be instantiated here. let shouldInstantiate :: Expr -> Bool shouldInstantiate Var{} = True shouldInstantiate (PositionedValue _ _ e) = shouldInstantiate e shouldInstantiate _ = False inferProperty :: (PSString, Expr) -> m (PSString, (Expr, SourceType)) inferProperty (name, val) = do TypedValue' _ val' ty <- infer val valAndType <- if shouldInstantiate val then instantiatePolyTypeWithUnknowns val' ty else pure (val', ty) pure (name, valAndType) toRowListItem (lbl, (_, ty)) = srcRowListItem (Label lbl) ty fields <- forM ps inferProperty let ty = srcTypeApp tyRecord $ rowFromList (map toRowListItem fields, srcREmpty) return $ TypedValue' True (Literal ss (ObjectLiteral (map (fmap (uncurry (TypedValue True))) fields))) ty infer' (ObjectUpdate o ps) = do ensureNoDuplicateProperties ps row <- freshType typedVals <- zipWith (\(name, _) t -> (name, t)) ps <$> traverse (infer . snd) ps let toRowListItem = uncurry srcRowListItem let newTys = map (\(name, TypedValue' _ _ ty) -> (Label name, ty)) typedVals oldTys <- zip (map (Label . fst) ps) <$> replicateM (length ps) freshType let oldTy = srcTypeApp tyRecord $ rowFromList (toRowListItem <$> oldTys, row) o' <- TypedValue True <$> (tvToExpr <$> check o oldTy) <*> pure oldTy let newVals = map (fmap tvToExpr) typedVals return $ TypedValue' True (ObjectUpdate o' newVals) $ srcTypeApp tyRecord $ rowFromList (toRowListItem <$> newTys, row) infer' (Accessor prop val) = withErrorMessageHint (ErrorCheckingAccessor val prop) $ do field <- freshType rest <- freshType typed <- tvToExpr <$> check val (srcTypeApp tyRecord (srcRCons (Label prop) field rest)) return $ TypedValue' True (Accessor prop typed) field infer' (Abs binder ret) | VarBinder ss arg <- binder = do ty <- freshType withBindingGroupVisible $ bindLocalVariables [(arg, ty, Defined)] $ do body@(TypedValue' _ _ bodyTy) <- infer' ret (body', bodyTy') <- instantiatePolyTypeWithUnknowns (tvToExpr body) bodyTy return $ TypedValue' True (Abs (VarBinder ss arg) body') (function ty bodyTy') | otherwise = internalError "Binder was not desugared" infer' (App f arg) = do f'@(TypedValue' _ _ ft) <- infer f (ret, app) <- checkFunctionApplication (tvToExpr f') ft arg return $ TypedValue' True app ret infer' (Var ss var) = do checkVisibility var ty <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards <=< lookupVariable $ var case ty of ConstrainedType _ con ty' -> do dicts <- getTypeClassDictionaries hints <- getHints return $ TypedValue' True (App (Var ss var) (TypeClassDictionary con dicts hints)) ty' _ -> return $ TypedValue' True (Var ss var) ty infer' v@(Constructor _ c) = do env <- getEnv case M.lookup c (dataConstructors env) of Nothing -> throwError . errorMessage . UnknownName . fmap DctorName $ c Just (_, _, ty, _) -> do (v', ty') <- sndM (introduceSkolemScope <=< replaceAllTypeSynonyms) <=< instantiatePolyTypeWithUnknowns v $ ty return $ TypedValue' True v' ty' infer' (Case vals binders) = do (vals', ts) <- instantiateForBinders vals binders ret <- freshType binders' <- checkBinders ts ret binders return $ TypedValue' True (Case vals' binders') ret infer' (IfThenElse cond th el) = do cond' <- tvToExpr <$> check cond tyBoolean th'@(TypedValue' _ _ thTy) <- infer th el'@(TypedValue' _ _ elTy) <- infer el (th'', thTy') <- instantiatePolyTypeWithUnknowns (tvToExpr th') thTy (el'', elTy') <- instantiatePolyTypeWithUnknowns (tvToExpr el') elTy unifyTypes thTy' elTy' return $ TypedValue' True (IfThenElse cond' th'' el'') thTy' infer' (Let w ds val) = do (ds', tv@(TypedValue' _ _ valTy)) <- inferLetBinding [] ds val infer return $ TypedValue' True (Let w ds' (tvToExpr tv)) valTy infer' (DeferredDictionary className tys) = do dicts <- getTypeClassDictionaries hints <- getHints return $ TypedValue' False (TypeClassDictionary (srcConstraint className tys Nothing) dicts hints) (foldl srcTypeApp (srcTypeConstructor (fmap coerceProperName className)) tys) infer' (TypedValue checkType val ty) = do moduleName <- unsafeCheckCurrentModule (kind, args) <- kindOfWithScopedVars ty checkTypeKind ty kind ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty tv <- if checkType then withScopedTypeVars moduleName args (check val ty') else return (TypedValue' False val ty) return $ TypedValue' True (tvToExpr tv) ty' infer' (Hole name) = do ty <- freshType ctx <- getLocalContext env <- getEnv tell . errorMessage $ HoleInferredType name ty ctx . Just $ TSBefore env return $ TypedValue' True (Hole name) ty infer' (PositionedValue pos c val) = warnAndRethrowWithPositionTC pos $ do TypedValue' t v ty <- infer' val return $ TypedValue' t (PositionedValue pos c v) ty infer' v = internalError $ "Invalid argument to infer: " ++ show v inferLetBinding :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => [Declaration] -> [Declaration] -> Expr -> (Expr -> m TypedValue') -> m ([Declaration], TypedValue') inferLetBinding seen [] ret j = (,) seen <$> withBindingGroupVisible (j ret) inferLetBinding seen (ValueDecl sa@(ss, _) ident nameKind [] [MkUnguarded (TypedValue checkType val ty)] : rest) ret j = do moduleName <- unsafeCheckCurrentModule TypedValue' _ val' ty'' <- warnAndRethrowWithPositionTC ss $ do (kind, args) <- kindOfWithScopedVars ty checkTypeKind ty kind let dict = M.singleton (Qualified Nothing ident) (ty, nameKind, Undefined) ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty if checkType then withScopedTypeVars moduleName args (bindNames dict (check val ty')) else return (TypedValue' checkType val ty) bindNames (M.singleton (Qualified Nothing ident) (ty'', nameKind, Defined)) $ inferLetBinding (seen ++ [ValueDecl sa ident nameKind [] [MkUnguarded (TypedValue checkType val' ty'')]]) rest ret j inferLetBinding seen (ValueDecl sa@(ss, _) ident nameKind [] [MkUnguarded val] : rest) ret j = do valTy <- freshType TypedValue' _ val' valTy' <- warnAndRethrowWithPositionTC ss $ do let dict = M.singleton (Qualified Nothing ident) (valTy, nameKind, Undefined) bindNames dict $ infer val warnAndRethrowWithPositionTC ss $ unifyTypes valTy valTy' bindNames (M.singleton (Qualified Nothing ident) (valTy', nameKind, Defined)) $ inferLetBinding (seen ++ [ValueDecl sa ident nameKind [] [MkUnguarded val']]) rest ret j inferLetBinding seen (BindingGroupDeclaration ds : rest) ret j = do moduleName <- unsafeCheckCurrentModule SplitBindingGroup untyped typed dict <- typeDictionaryForBindingGroup Nothing . NEL.toList $ fmap (\(i, _, v) -> (i, v)) ds ds1' <- parU typed $ \e -> checkTypedBindingGroupElement moduleName e dict ds2' <- forM untyped $ \e -> typeForBindingGroupElement e dict let ds' = NEL.fromList [(ident, Private, val') | (ident, (val', _)) <- ds1' ++ ds2'] bindNames dict $ do makeBindingGroupVisible inferLetBinding (seen ++ [BindingGroupDeclaration ds']) rest ret j inferLetBinding _ _ _ _ = internalError "Invalid argument to inferLetBinding" -- | Infer the types of variables brought into scope by a binder inferBinder :: forall m . (MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => SourceType -> Binder -> m (M.Map Ident SourceType) inferBinder _ NullBinder = return M.empty inferBinder val (LiteralBinder _ (StringLiteral _)) = unifyTypes val tyString >> return M.empty inferBinder val (LiteralBinder _ (CharLiteral _)) = unifyTypes val tyChar >> return M.empty inferBinder val (LiteralBinder _ (NumericLiteral (Left _))) = unifyTypes val tyInt >> return M.empty inferBinder val (LiteralBinder _ (NumericLiteral (Right _))) = unifyTypes val tyNumber >> return M.empty inferBinder val (LiteralBinder _ (BooleanLiteral _)) = unifyTypes val tyBoolean >> return M.empty inferBinder val (VarBinder _ name) = return $ M.singleton name val inferBinder val (ConstructorBinder ss ctor binders) = do env <- getEnv case M.lookup ctor (dataConstructors env) of Just (_, _, ty, _) -> do (_, fn) <- instantiatePolyTypeWithUnknowns (internalError "Data constructor types cannot contain constraints") ty fn' <- introduceSkolemScope <=< replaceAllTypeSynonyms $ fn let (args, ret) = peelArgs fn' expected = length args actual = length binders unless (expected == actual) . throwError . errorMessage' ss $ IncorrectConstructorArity ctor expected actual unifyTypes ret val M.unions <$> zipWithM inferBinder (reverse args) binders _ -> throwError . errorMessage' ss . UnknownName . fmap DctorName $ ctor where peelArgs :: Type a -> ([Type a], Type a) peelArgs = go [] where go args (TypeApp _ (TypeApp _ fn arg) ret) | eqType fn tyFunction = go (arg : args) ret go args ret = (args, ret) inferBinder val (LiteralBinder _ (ObjectLiteral props)) = do row <- freshType rest <- freshType m1 <- inferRowProperties row rest props unifyTypes val (srcTypeApp tyRecord row) return m1 where inferRowProperties :: SourceType -> SourceType -> [(PSString, Binder)] -> m (M.Map Ident SourceType) inferRowProperties nrow row [] = unifyTypes nrow row >> return M.empty inferRowProperties nrow row ((name, binder):binders) = do propTy <- freshType m1 <- inferBinder propTy binder m2 <- inferRowProperties nrow (srcRCons (Label name) propTy row) binders return $ m1 `M.union` m2 inferBinder val (LiteralBinder _ (ArrayLiteral binders)) = do el <- freshType m1 <- M.unions <$> traverse (inferBinder el) binders unifyTypes val (srcTypeApp tyArray el) return m1 inferBinder val (NamedBinder ss name binder) = warnAndRethrowWithPositionTC ss $ do m <- inferBinder val binder return $ M.insert name val m inferBinder val (PositionedBinder pos _ binder) = warnAndRethrowWithPositionTC pos $ inferBinder val binder inferBinder val (TypedBinder ty binder) = do kind <- kindOf ty checkTypeKind ty kind ty1 <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty unifyTypes val ty1 inferBinder ty1 binder inferBinder _ OpBinder{} = internalError "OpBinder should have been desugared before inferBinder" inferBinder _ BinaryNoParensBinder{} = internalError "BinaryNoParensBinder should have been desugared before inferBinder" inferBinder _ ParensInBinder{} = internalError "ParensInBinder should have been desugared before inferBinder" -- | Returns true if a binder requires its argument type to be a monotype. -- | If this is the case, we need to instantiate any polymorphic types before checking binders. binderRequiresMonotype :: Binder -> Bool binderRequiresMonotype NullBinder = False binderRequiresMonotype (VarBinder _ _) = False binderRequiresMonotype (NamedBinder _ _ b) = binderRequiresMonotype b binderRequiresMonotype (PositionedBinder _ _ b) = binderRequiresMonotype b binderRequiresMonotype (TypedBinder ty b) = isMonoType ty || binderRequiresMonotype b binderRequiresMonotype _ = True -- | Instantiate polytypes only when necessitated by a binder. instantiateForBinders :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => [Expr] -> [CaseAlternative] -> m ([Expr], [SourceType]) instantiateForBinders vals cas = unzip <$> zipWithM (\val inst -> do TypedValue' _ val' ty <- infer val if inst then instantiatePolyTypeWithUnknowns val' ty else return (val', ty)) vals shouldInstantiate where shouldInstantiate :: [Bool] shouldInstantiate = map (any binderRequiresMonotype) . transpose . map caseAlternativeBinders $ cas -- | -- Check the types of the return values in a set of binders in a case statement -- checkBinders :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => [SourceType] -> SourceType -> [CaseAlternative] -> m [CaseAlternative] checkBinders _ _ [] = return [] checkBinders nvals ret (CaseAlternative binders result : bs) = do guardWith (errorMessage $ OverlappingArgNames Nothing) $ let ns = concatMap binderNames binders in length (ordNub ns) == length ns m1 <- M.unions <$> zipWithM inferBinder nvals binders r <- bindLocalVariables [ (name, ty, Defined) | (name, ty) <- M.toList m1 ] $ CaseAlternative binders <$> forM result (\ge -> checkGuardedRhs ge ret) rs <- checkBinders nvals ret bs return $ r : rs checkGuardedRhs :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => GuardedExpr -> SourceType -> m GuardedExpr checkGuardedRhs (GuardedExpr [] rhs) ret = do rhs' <- TypedValue True <$> (tvToExpr <$> check rhs ret) <*> pure ret return $ GuardedExpr [] rhs' checkGuardedRhs (GuardedExpr (ConditionGuard cond : guards) rhs) ret = do cond' <- withErrorMessageHint ErrorCheckingGuard $ check cond tyBoolean GuardedExpr guards' rhs' <- checkGuardedRhs (GuardedExpr guards rhs) ret return $ GuardedExpr (ConditionGuard (tvToExpr cond') : guards') rhs' checkGuardedRhs (GuardedExpr (PatternGuard binder expr : guards) rhs) ret = do tv@(TypedValue' _ _ ty) <- infer expr variables <- inferBinder ty binder GuardedExpr guards' rhs' <- bindLocalVariables [ (name, bty, Defined) | (name, bty) <- M.toList variables ] $ checkGuardedRhs (GuardedExpr guards rhs) ret return $ GuardedExpr (PatternGuard binder (tvToExpr tv) : guards') rhs' -- | -- Check the type of a value, rethrowing errors to provide a better error message -- check :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> SourceType -> m TypedValue' check val ty = withErrorMessageHint (ErrorCheckingType val ty) $ check' val ty -- | -- Check the type of a value -- check' :: forall m . (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> SourceType -> m TypedValue' check' val (ForAll ann ident mbK ty _) = do scope <- newSkolemScope sko <- newSkolemConstant let ss = case val of PositionedValue pos c _ -> (pos, c) _ -> NullSourceAnn sk = skolemize ss ident sko scope ty skVal = skolemizeTypesInValue ss ident sko scope val val' <- tvToExpr <$> check skVal sk return $ TypedValue' True val' (ForAll ann ident mbK ty (Just scope)) check' val t@(ConstrainedType _ con@(Constraint _ (Qualified _ (ProperName className)) _ _) ty) = do dictName <- freshIdent ("dict" <> className) dicts <- newDictionaries [] (Qualified Nothing dictName) con val' <- withBindingGroupVisible $ withTypeClassDictionaries dicts $ check val ty return $ TypedValue' True (Abs (VarBinder nullSourceSpan dictName) (tvToExpr val')) t check' val u@(TUnknown _ _) = do val'@(TypedValue' _ _ ty) <- infer val -- Don't unify an unknown with an inferred polytype (val'', ty') <- instantiatePolyTypeWithUnknowns (tvToExpr val') ty unifyTypes ty' u return $ TypedValue' True val'' ty' check' v@(Literal _ (NumericLiteral (Left _))) t | t == tyInt = return $ TypedValue' True v t check' v@(Literal _ (NumericLiteral (Right _))) t | t == tyNumber = return $ TypedValue' True v t check' v@(Literal _ (StringLiteral _)) t | t == tyString = return $ TypedValue' True v t check' v@(Literal _ (CharLiteral _)) t | t == tyChar = return $ TypedValue' True v t check' v@(Literal _ (BooleanLiteral _)) t | t == tyBoolean = return $ TypedValue' True v t check' (Literal ss (ArrayLiteral vals)) t@(TypeApp _ a ty) = do unifyTypes a tyArray array <- Literal ss . ArrayLiteral . map tvToExpr <$> forM vals (`check` ty) return $ TypedValue' True array t check' (Abs binder ret) ty@(TypeApp _ (TypeApp _ t argTy) retTy) | VarBinder ss arg <- binder = do unifyTypes t tyFunction ret' <- withBindingGroupVisible $ bindLocalVariables [(arg, argTy, Defined)] $ check ret retTy return $ TypedValue' True (Abs (VarBinder ss arg) (tvToExpr ret')) ty | otherwise = internalError "Binder was not desugared" check' (App f arg) ret = do f'@(TypedValue' _ _ ft) <- infer f (retTy, app) <- checkFunctionApplication (tvToExpr f') ft arg elaborate <- subsumes retTy ret return $ TypedValue' True (elaborate app) ret check' v@(Var _ var) ty = do checkVisibility var repl <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< lookupVariable $ var ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty elaborate <- subsumes repl ty' return $ TypedValue' True (elaborate v) ty' check' (DeferredDictionary className tys) ty = do {- -- Here, we replace a placeholder for a superclass dictionary with a regular -- TypeClassDictionary placeholder. The reason we do this is that it is necessary to have the -- correct super instance dictionaries in scope, and these are not available when the type class -- declaration gets desugared. -} dicts <- getTypeClassDictionaries hints <- getHints return $ TypedValue' False (TypeClassDictionary (srcConstraint className tys Nothing) dicts hints) ty check' (TypedValue checkType val ty1) ty2 = do kind <- kindOf ty1 checkTypeKind ty1 kind ty1' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty1 ty2' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty2 elaborate <- subsumes ty1' ty2' val' <- if checkType then tvToExpr <$> check val ty1' else pure val return $ TypedValue' True (TypedValue checkType (elaborate val') ty1') ty2' check' (Case vals binders) ret = do (vals', ts) <- instantiateForBinders vals binders binders' <- checkBinders ts ret binders return $ TypedValue' True (Case vals' binders') ret check' (IfThenElse cond th el) ty = do cond' <- tvToExpr <$> check cond tyBoolean th' <- tvToExpr <$> check th ty el' <- tvToExpr <$> check el ty return $ TypedValue' True (IfThenElse cond' th' el') ty check' e@(Literal ss (ObjectLiteral ps)) t@(TypeApp _ obj row) | obj == tyRecord = do ensureNoDuplicateProperties ps ps' <- checkProperties e ps row False return $ TypedValue' True (Literal ss (ObjectLiteral ps')) t check' (TypeClassDictionaryConstructorApp name ps) t = do ps' <- tvToExpr <$> check' ps t return $ TypedValue' True (TypeClassDictionaryConstructorApp name ps') t check' e@(ObjectUpdate obj ps) t@(TypeApp _ o row) | o == tyRecord = do ensureNoDuplicateProperties ps -- We need to be careful to avoid duplicate labels here. -- We check _obj_ against the type _t_ with the types in _ps_ replaced with unknowns. let (propsToCheck, rest) = rowToList row (removedProps, remainingProps) = partition (\(RowListItem _ p _) -> p `elem` map (Label . fst) ps) propsToCheck us <- zipWith srcRowListItem (map rowListLabel removedProps) <$> replicateM (length ps) freshType obj' <- tvToExpr <$> check obj (srcTypeApp tyRecord (rowFromList (us ++ remainingProps, rest))) ps' <- checkProperties e ps row True return $ TypedValue' True (ObjectUpdate obj' ps') t check' (Accessor prop val) ty = withErrorMessageHint (ErrorCheckingAccessor val prop) $ do rest <- freshType val' <- tvToExpr <$> check val (srcTypeApp tyRecord (srcRCons (Label prop) ty rest)) return $ TypedValue' True (Accessor prop val') ty check' v@(Constructor _ c) ty = do env <- getEnv case M.lookup c (dataConstructors env) of Nothing -> throwError . errorMessage . UnknownName . fmap DctorName $ c Just (_, _, ty1, _) -> do repl <- introduceSkolemScope <=< replaceAllTypeSynonyms $ ty1 ty' <- introduceSkolemScope ty elaborate <- subsumes repl ty' return $ TypedValue' True (elaborate v) ty' check' (Let w ds val) ty = do (ds', val') <- inferLetBinding [] ds val (`check` ty) return $ TypedValue' True (Let w ds' (tvToExpr val')) ty check' val kt@(KindedType _ ty kind) = do checkTypeKind ty kind val' <- tvToExpr <$> check' val ty return $ TypedValue' True val' kt check' (PositionedValue pos c val) ty = warnAndRethrowWithPositionTC pos $ do TypedValue' t v ty' <- check' val ty return $ TypedValue' t (PositionedValue pos c v) ty' check' val ty = do TypedValue' _ val' ty' <- infer val elaborate <- subsumes ty' ty return $ TypedValue' True (elaborate val') ty -- | -- Check the type of a collection of named record fields -- -- The @lax@ parameter controls whether or not every record member has to be provided. For object updates, this is not the case. -- checkProperties :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> [(PSString, Expr)] -> SourceType -> Bool -> m [(PSString, Expr)] checkProperties expr ps row lax = convert <$> go ps (toRowPair <$> ts') r' where convert = fmap (fmap tvToExpr) (ts', r') = rowToList row toRowPair (RowListItem _ lbl ty) = (lbl, ty) go [] [] (REmpty _) = return [] go [] [] u@(TUnknown _ _) | lax = return [] | otherwise = do unifyTypes u srcREmpty return [] go [] [] Skolem{} | lax = return [] go [] ((p, _): _) _ | lax = return [] | otherwise = throwError . errorMessage $ PropertyIsMissing p go ((p,_):_) [] (REmpty _) = throwError . errorMessage $ AdditionalProperty $ Label p go ((p,v):ps') ts r = case lookup (Label p) ts of Nothing -> do v'@(TypedValue' _ _ ty) <- infer v rest <- freshType unifyTypes r (srcRCons (Label p) ty rest) ps'' <- go ps' ts rest return $ (p, v') : ps'' Just ty -> do v' <- check v ty ps'' <- go ps' (delete (Label p, ty) ts) r return $ (p, v') : ps'' go _ _ _ = throwError . errorMessage $ ExprDoesNotHaveType expr (srcTypeApp tyRecord row) -- | Check the type of a function application, rethrowing errors to provide a better error message. -- -- This judgment takes three inputs: -- -- * The expression of the function we are applying -- * The type of that function -- * The expression we are applying it to -- -- and synthesizes two outputs: -- -- * The return type -- * The elaborated expression for the function application (since we might need to -- insert type class dictionaries, etc.) checkFunctionApplication :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -- ^ The function expression -> SourceType -- ^ The type of the function -> Expr -- ^ The argument expression -> m (SourceType, Expr) -- ^ The result type, and the elaborated term checkFunctionApplication fn fnTy arg = withErrorMessageHint (ErrorInApplication fn fnTy arg) $ do subst <- gets checkSubstitution checkFunctionApplication' fn (substituteType subst fnTy) arg -- | Check the type of a function application checkFunctionApplication' :: (MonadSupply m, MonadState CheckState m, MonadError MultipleErrors m, MonadWriter MultipleErrors m) => Expr -> SourceType -> Expr -> m (SourceType, Expr) checkFunctionApplication' fn (TypeApp _ (TypeApp _ tyFunction' argTy) retTy) arg = do unifyTypes tyFunction' tyFunction arg' <- tvToExpr <$> check arg argTy return (retTy, App fn arg') checkFunctionApplication' fn (ForAll _ ident _ ty _) arg = do replaced <- replaceVarWithUnknown ident ty checkFunctionApplication fn replaced arg checkFunctionApplication' fn (KindedType _ ty _) arg = checkFunctionApplication fn ty arg checkFunctionApplication' fn (ConstrainedType _ con fnTy) arg = do dicts <- getTypeClassDictionaries hints <- getHints checkFunctionApplication' (App fn (TypeClassDictionary con dicts hints)) fnTy arg checkFunctionApplication' fn fnTy dict@TypeClassDictionary{} = return (fnTy, App fn dict) checkFunctionApplication' fn u arg = do tv@(TypedValue' _ _ ty) <- do TypedValue' _ arg' t <- infer arg (arg'', t') <- instantiatePolyTypeWithUnknowns arg' t return $ TypedValue' True arg'' t' ret <- freshType unifyTypes u (function ty ret) return (ret, App fn (tvToExpr tv)) -- | -- Ensure a set of property names and value does not contain duplicate labels -- ensureNoDuplicateProperties :: (MonadError MultipleErrors m) => [(PSString, Expr)] -> m () ensureNoDuplicateProperties ps = let ls = map fst ps in case ls \\ ordNub ls of l : _ -> throwError . errorMessage $ DuplicateLabel (Label l) Nothing _ -> return ()