----------------------------------------------------------------------------- -- -- Module : Language.PureScript.TypeChecker.Types -- Copyright : (c) Phil Freeman 2013 -- License : MIT -- -- Maintainer : Phil Freeman -- Stability : experimental -- Portability : -- -- | -- This module implements the type checker -- ----------------------------------------------------------------------------- {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE CPP #-} module Language.PureScript.TypeChecker.Types ( typesOf ) where {- The following functions represent the corresponding type checking judgements: infer Synthesize a type for a value check Check a value has a given type checkProperties Check an object with a given type contains specified properties checkFunctionApplication Check a function of a given type returns a value of another type when applied to its arguments -} import Data.Either (lefts, rights) import Data.List import Data.Maybe (fromMaybe) import qualified Data.Map as M #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Control.Monad import Control.Monad.State import Control.Monad.Unify import Control.Monad.Error.Class (MonadError(..)) import Language.PureScript.AST import Language.PureScript.Environment import Language.PureScript.Errors import Language.PureScript.Kinds import Language.PureScript.Names import Language.PureScript.Traversals import Language.PureScript.TypeChecker.Entailment import Language.PureScript.TypeChecker.Kinds import Language.PureScript.TypeChecker.Monad import Language.PureScript.TypeChecker.Rows import Language.PureScript.TypeChecker.Skolems import Language.PureScript.TypeChecker.Subsumption import Language.PureScript.TypeChecker.Synonyms import Language.PureScript.TypeChecker.Unify import Language.PureScript.TypeClassDictionaries import Language.PureScript.Types import qualified Language.PureScript.Constants as C -- | -- Infer the types of multiple mutually-recursive values, and return elaborated values including -- type class dictionaries and type annotations. -- typesOf :: Maybe ModuleName -> ModuleName -> [(Ident, Expr)] -> Check [(Ident, (Expr, Type))] typesOf mainModuleName moduleName vals = do tys <- fmap tidyUp . liftUnifyWarnings replace $ do (untyped, typed, dict, untypedDict) <- typeDictionaryForBindingGroup moduleName vals ds1 <- parU typed $ \e -> do triple@(_, (_, ty)) <- checkTypedBindingGroupElement moduleName e dict checkMain (fst e) ty return triple ds2 <- forM untyped $ \e -> do triple@(_, (_, ty)) <- typeForBindingGroupElement e dict untypedDict checkMain (fst e) ty return triple return $ ds1 ++ ds2 forM tys $ \(ident, (val, ty)) -> do -- Replace type class dictionary placeholders with actual dictionaries val' <- replaceTypeClassDictionaries moduleName val -- Check skolem variables did not escape their scope skolemEscapeCheck val' -- Check rows do not contain duplicate labels checkDuplicateLabels val' -- Remove type synonyms placeholders, and replace -- top-level unification variables with named type variables. let val'' = overTypes desaturateAllTypeSynonyms val' ty' = varIfUnknown . desaturateAllTypeSynonyms $ ty return (ident, (val'', ty')) where -- Apply the substitution that was returned from runUnify to both types and (type-annotated) values tidyUp (ts, sub) = map (\(i, (val, ty)) -> (i, (overTypes (sub $?) val, sub $? ty))) ts -- Replace all the wildcards types with their inferred types replace sub (SimpleErrorWrapper (WildcardInferredType ty)) = SimpleErrorWrapper $ WildcardInferredType (sub $? ty) replace _ em = em -- If --main is enabled, need to check that `main` has type Eff eff a for some eff, a checkMain nm ty = when (Just moduleName == mainModuleName && nm == Ident C.main) $ do [eff, a] <- replicateM 2 fresh ty =?= TypeApp (TypeApp (TypeConstructor (Qualified (Just (ModuleName [ProperName "Control", ProperName "Monad", ProperName "Eff"])) (ProperName "Eff"))) eff) a type TypeData = M.Map (ModuleName, Ident) (Type, NameKind, NameVisibility) type UntypedData = [(Ident, Type)] typeDictionaryForBindingGroup :: ModuleName -> [(Ident, Expr)] -> UnifyT Type Check ([(Ident, Expr)], [(Ident, (Expr, Type, Bool))], TypeData, UntypedData) typeDictionaryForBindingGroup moduleName vals = do let -- Map each declaration to a name/value pair, with an optional type, if the declaration is typed es = map isTyped vals -- Filter the typed and untyped declarations untyped = lefts es typed = rights es -- Make a map of names to typed declarations typedDict = map (\(ident, (_, ty, _)) -> (ident, ty)) typed -- Create fresh unification variables for the types of untyped declarations untypedNames <- replicateM (length untyped) fresh let -- Make a map of names to the unification variables of untyped declarations untypedDict = zip (map fst untyped) untypedNames -- Create the dictionary of all name/type pairs, which will be added to the environment during type checking dict = M.fromList (map (\(ident, ty) -> ((moduleName, ident), (ty, Private, Undefined))) $ typedDict ++ untypedDict) return (untyped, typed, dict, untypedDict) checkTypedBindingGroupElement :: ModuleName -> (Ident, (Expr, Type, Bool)) -> TypeData -> UnifyT Type Check (Ident, (Expr, Type)) checkTypedBindingGroupElement mn (ident, (val', ty, checkType)) dict = do -- Replace type wildcards ty' <- replaceTypeWildcards ty -- Kind check (kind, args) <- liftCheck $ kindOfWithScopedVars ty checkTypeKind kind -- Check the type with the new names in scope ty'' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty' val'' <- if checkType then withScopedTypeVars mn args $ bindNames dict $ TypedValue True <$> check val' ty'' <*> pure ty'' else return (TypedValue False val' ty'') return (ident, (val'', ty'')) typeForBindingGroupElement :: (Ident, Expr) -> TypeData -> UntypedData -> UnifyT Type Check (Ident, (Expr, Type)) typeForBindingGroupElement (ident, val) dict untypedDict = do -- Infer the type with the new names in scope TypedValue _ val' ty <- bindNames dict $ infer val ty =?= fromMaybe (error "name not found in dictionary") (lookup ident untypedDict) return (ident, (TypedValue True val' ty, ty)) -- | -- Check if a value contains a type annotation -- isTyped :: (Ident, Expr) -> Either (Ident, Expr) (Ident, (Expr, Type, Bool)) isTyped (name, TypedValue checkType value ty) = Right (name, (value, ty, checkType)) isTyped (name, value) = Left (name, value) -- | -- Map a function over type annotations appearing inside a value -- overTypes :: (Type -> Type) -> Expr -> Expr overTypes f = let (_, f', _) = everywhereOnValues id g id in f' where g :: Expr -> Expr g (TypedValue checkTy val t) = TypedValue checkTy val (f t) g (TypeClassDictionary (nm, tys) sco) = TypeClassDictionary (nm, map f tys) sco g other = other -- | -- Replace type class dictionary placeholders with inferred type class dictionaries -- replaceTypeClassDictionaries :: ModuleName -> Expr -> Check Expr replaceTypeClassDictionaries mn = let (_, f, _) = everywhereOnValuesTopDownM return go return in f where go (TypeClassDictionary constraint dicts) = do env <- getEnv entails env mn dicts constraint go other = return other -- | -- Check the kind of a type, failing if it is not of kind *. -- checkTypeKind :: Kind -> UnifyT t Check () checkTypeKind kind = guardWith (errorMessage (ExpectedType kind)) $ kind == Star -- | -- Remove any ForAlls and ConstrainedType constructors in a type by introducing new unknowns -- or TypeClassDictionary values. -- -- This is necessary during type checking to avoid unifying a polymorphic type with a -- unification variable. -- instantiatePolyTypeWithUnknowns :: Expr -> Type -> UnifyT Type Check (Expr, Type) instantiatePolyTypeWithUnknowns val (ForAll ident ty _) = do ty' <- replaceVarWithUnknown ident ty instantiatePolyTypeWithUnknowns val ty' instantiatePolyTypeWithUnknowns val (ConstrainedType constraints ty) = do dicts <- getTypeClassDictionaries (_, ty') <- instantiatePolyTypeWithUnknowns (error "Types under a constraint cannot themselves be constrained") ty return (foldl App val (map (flip TypeClassDictionary dicts) constraints), ty') instantiatePolyTypeWithUnknowns val ty = return (val, ty) -- | -- Infer a type for a value, rethrowing any error to provide a more useful error message -- infer :: Expr -> UnifyT Type Check Expr infer val = rethrow (onErrorMessages (ErrorInferringType val)) $ infer' val -- | -- Infer a type for a value -- infer' :: Expr -> UnifyT Type Check Expr infer' v@(NumericLiteral (Left _)) = return $ TypedValue True v tyInt infer' v@(NumericLiteral (Right _)) = return $ TypedValue True v tyNumber infer' v@(StringLiteral _) = return $ TypedValue True v tyString infer' v@(CharLiteral _) = return $ TypedValue True v tyChar infer' v@(BooleanLiteral _) = return $ TypedValue True v tyBoolean infer' (ArrayLiteral vals) = do ts <- mapM infer vals els <- fresh forM_ ts $ \(TypedValue _ _ t) -> els =?= t return $ TypedValue True (ArrayLiteral ts) (TypeApp tyArray els) infer' (ObjectLiteral ps) = do ensureNoDuplicateProperties ps ts <- mapM (infer . snd) ps let fields = zipWith (\name (TypedValue _ _ t) -> (name, t)) (map fst ps) ts ty = TypeApp tyObject $ rowFromList (fields, REmpty) return $ TypedValue True (ObjectLiteral (zip (map fst ps) ts)) ty infer' (ObjectUpdate o ps) = do ensureNoDuplicateProperties ps row <- fresh newVals <- zipWith (\(name, _) t -> (name, t)) ps <$> mapM (infer . snd) ps let newTys = map (\(name, TypedValue _ _ ty) -> (name, ty)) newVals oldTys <- zip (map fst ps) <$> replicateM (length ps) fresh let oldTy = TypeApp tyObject $ rowFromList (oldTys, row) o' <- TypedValue True <$> check o oldTy <*> pure oldTy return $ TypedValue True (ObjectUpdate o' newVals) $ TypeApp tyObject $ rowFromList (newTys, row) infer' (Accessor prop val) = do typed@(TypedValue _ _ objTy) <- infer val propTy <- inferProperty objTy prop case propTy of Nothing -> do field <- fresh rest <- fresh _ <- subsumes Nothing objTy (TypeApp tyObject (RCons prop field rest)) return $ TypedValue True (Accessor prop typed) field Just ty -> return $ TypedValue True (Accessor prop typed) ty infer' (Abs (Left arg) ret) = do ty <- fresh Just moduleName <- checkCurrentModule <$> get withBindingGroupVisible $ bindLocalVariables moduleName [(arg, ty, Defined)] $ do body@(TypedValue _ _ bodyTy) <- infer' ret return $ TypedValue True (Abs (Left arg) body) $ function ty bodyTy infer' (Abs (Right _) _) = error "Binder was not desugared" infer' (App f arg) = do f'@(TypedValue _ _ ft) <- infer f (ret, app) <- checkFunctionApplication f' ft arg Nothing return $ TypedValue True app ret infer' (Var var) = do Just moduleName <- checkCurrentModule <$> get checkVisibility moduleName var ty <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards <=< lookupVariable moduleName $ var case ty of ConstrainedType constraints ty' -> do dicts <- getTypeClassDictionaries return $ TypedValue True (foldl App (Var var) (map (flip TypeClassDictionary dicts) constraints)) ty' _ -> return $ TypedValue True (Var var) ty infer' v@(Constructor c) = do env <- getEnv case M.lookup c (dataConstructors env) of Nothing -> throwError . errorMessage $ UnknownDataConstructor c Nothing Just (_, _, ty, _) -> do (v', ty') <- sndM (introduceSkolemScope <=< replaceAllTypeSynonyms) <=< instantiatePolyTypeWithUnknowns v $ ty return $ TypedValue True v' ty' infer' (Case vals binders) = do ts <- mapM infer vals ret <- fresh binders' <- checkBinders (map (\(TypedValue _ _ t) -> t) ts) ret binders return $ TypedValue True (Case ts binders') ret infer' (IfThenElse cond th el) = do cond' <- check cond tyBoolean v2@(TypedValue _ _ t2) <- infer th v3@(TypedValue _ _ t3) <- infer el (v2', v3', t) <- meet v2 v3 t2 t3 return $ TypedValue True (IfThenElse cond' v2' v3') t infer' (Let ds val) = do (ds', val'@(TypedValue _ _ valTy)) <- inferLetBinding [] ds val infer return $ TypedValue True (Let ds' val') valTy infer' (SuperClassDictionary className tys) = do dicts <- getTypeClassDictionaries return $ TypeClassDictionary (className, tys) dicts infer' (TypedValue checkType val ty) = do Just moduleName <- checkCurrentModule <$> get (kind, args) <- liftCheck $ kindOfWithScopedVars ty checkTypeKind kind ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty val' <- if checkType then withScopedTypeVars moduleName args (check val ty') else return val return $ TypedValue True val' ty' infer' (PositionedValue pos _ val) = warnAndRethrowWithPosition pos $ infer' val infer' _ = error "Invalid argument to infer" inferLetBinding :: [Declaration] -> [Declaration] -> Expr -> (Expr -> UnifyT Type Check Expr) -> UnifyT Type Check ([Declaration], Expr) inferLetBinding seen [] ret j = (,) seen <$> withBindingGroupVisible (j ret) inferLetBinding seen (ValueDeclaration ident nameKind [] (Right (tv@(TypedValue checkType val ty))) : rest) ret j = do Just moduleName <- checkCurrentModule <$> get (kind, args) <- liftCheck $ kindOfWithScopedVars ty checkTypeKind kind let dict = M.singleton (moduleName, ident) (ty, nameKind, Undefined) ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty TypedValue _ val' ty'' <- if checkType then withScopedTypeVars moduleName args (bindNames dict (check val ty')) else return tv bindNames (M.singleton (moduleName, ident) (ty'', nameKind, Defined)) $ inferLetBinding (seen ++ [ValueDeclaration ident nameKind [] (Right (TypedValue checkType val' ty''))]) rest ret j inferLetBinding seen (ValueDeclaration ident nameKind [] (Right val) : rest) ret j = do valTy <- fresh Just moduleName <- checkCurrentModule <$> get let dict = M.singleton (moduleName, ident) (valTy, nameKind, Undefined) TypedValue _ val' valTy' <- bindNames dict $ infer val valTy =?= valTy' bindNames (M.singleton (moduleName, ident) (valTy', nameKind, Defined)) $ inferLetBinding (seen ++ [ValueDeclaration ident nameKind [] (Right val')]) rest ret j inferLetBinding seen (BindingGroupDeclaration ds : rest) ret j = do Just moduleName <- checkCurrentModule <$> get (untyped, typed, dict, untypedDict) <- typeDictionaryForBindingGroup moduleName (map (\(i, _, v) -> (i, v)) ds) ds1' <- parU typed $ \e -> checkTypedBindingGroupElement moduleName e dict ds2' <- forM untyped $ \e -> typeForBindingGroupElement e dict untypedDict let ds' = [(ident, Private, val') | (ident, (val', _)) <- ds1' ++ ds2'] bindNames dict $ do makeBindingGroupVisible inferLetBinding (seen ++ [BindingGroupDeclaration ds']) rest ret j inferLetBinding seen (PositionedDeclaration pos com d : ds) ret j = warnAndRethrowWithPosition pos $ do (d' : ds', val') <- inferLetBinding seen (d : ds) ret j return (PositionedDeclaration pos com d' : ds', val') inferLetBinding _ _ _ _ = error "Invalid argument to inferLetBinding" -- | -- Infer the type of a property inside a record with a given type -- inferProperty :: Type -> String -> UnifyT Type Check (Maybe Type) inferProperty (TypeApp obj row) prop | obj == tyObject = do let (props, _) = rowToList row return $ lookup prop props inferProperty (SaturatedTypeSynonym name args) prop = do replaced <- introduceSkolemScope <=< expandTypeSynonym name $ args inferProperty replaced prop inferProperty (ForAll ident ty _) prop = do replaced <- replaceVarWithUnknown ident ty inferProperty replaced prop inferProperty _ _ = return Nothing -- | -- Infer the types of variables brought into scope by a binder -- inferBinder :: Type -> Binder -> UnifyT Type Check (M.Map Ident Type) inferBinder _ NullBinder = return M.empty inferBinder val (StringBinder _) = val =?= tyString >> return M.empty inferBinder val (CharBinder _) = val =?= tyChar >> return M.empty inferBinder val (NumberBinder (Left _)) = val =?= tyInt >> return M.empty inferBinder val (NumberBinder (Right _)) = val =?= tyNumber >> return M.empty inferBinder val (BooleanBinder _) = val =?= tyBoolean >> return M.empty inferBinder val (VarBinder name) = return $ M.singleton name val inferBinder val (ConstructorBinder ctor binders) = do env <- getEnv case M.lookup ctor (dataConstructors env) of Just (_, _, ty, _) -> do (_, fn) <- instantiatePolyTypeWithUnknowns (error "Data constructor types cannot contain constraints") ty fn' <- introduceSkolemScope <=< replaceAllTypeSynonyms $ fn go binders fn' where go [] ty' = case (val, ty') of (TypeConstructor _, TypeApp _ _) -> throwIncorrectArity _ -> do _ <- subsumes Nothing val ty' return M.empty go (binder : binders') (TypeApp (TypeApp t obj) ret) | t == tyFunction = M.union <$> inferBinder obj binder <*> go binders' ret go _ _ = throwIncorrectArity throwIncorrectArity = throwError . errorMessage $ IncorrectConstructorArity ctor _ -> throwError . errorMessage $ UnknownDataConstructor ctor Nothing inferBinder val (ObjectBinder props) = do row <- fresh rest <- fresh m1 <- inferRowProperties row rest props val =?= TypeApp tyObject row return m1 where inferRowProperties :: Type -> Type -> [(String, Binder)] -> UnifyT Type Check (M.Map Ident Type) inferRowProperties nrow row [] = nrow =?= row >> return M.empty inferRowProperties nrow row ((name, binder):binders) = do propTy <- fresh m1 <- inferBinder propTy binder m2 <- inferRowProperties nrow (RCons name propTy row) binders return $ m1 `M.union` m2 inferBinder val (ArrayBinder binders) = do el <- fresh m1 <- M.unions <$> mapM (inferBinder el) binders val =?= TypeApp tyArray el return m1 inferBinder val (NamedBinder name binder) = do m <- inferBinder val binder return $ M.insert name val m inferBinder val (PositionedBinder pos _ binder) = warnAndRethrowWithPosition pos $ inferBinder val binder -- | -- Check the types of the return values in a set of binders in a case statement -- checkBinders :: [Type] -> Type -> [CaseAlternative] -> UnifyT Type Check [CaseAlternative] checkBinders _ _ [] = return [] checkBinders nvals ret (CaseAlternative binders result : bs) = do guardWith (errorMessage $ OverlappingArgNames Nothing) $ let ns = concatMap binderNames binders in length (nub ns) == length ns Just moduleName <- checkCurrentModule <$> get m1 <- M.unions <$> zipWithM inferBinder nvals binders r <- bindLocalVariables moduleName [ (name, ty, Defined) | (name, ty) <- M.toList m1 ] $ CaseAlternative binders <$> case result of Left gs -> do gs' <- forM gs $ \(grd, val) -> do grd' <- check grd tyBoolean val' <- TypedValue True <$> check val ret <*> pure ret return (grd', val') return $ Left gs' Right val -> do val' <- TypedValue True <$> check val ret <*> pure ret return $ Right val' rs <- checkBinders nvals ret bs return $ r : rs -- | -- Check the type of a value, rethrowing errors to provide a better error message -- check :: Expr -> Type -> UnifyT Type Check Expr check val ty = rethrow (onErrorMessages (ErrorCheckingType val ty)) $ check' val ty -- | -- Check the type of a value -- check' :: Expr -> Type -> UnifyT Type Check Expr check' val (ForAll ident ty _) = do scope <- newSkolemScope sko <- newSkolemConstant let sk = skolemize ident sko scope ty let skVal = skolemizeTypesInValue ident sko scope val val' <- check skVal sk return $ TypedValue True val' (ForAll ident ty (Just scope)) check' val t@(ConstrainedType constraints ty) = do dictNames <- forM constraints $ \(Qualified _ (ProperName className), _) -> do n <- liftCheck freshDictionaryName return $ Ident $ "__dict_" ++ className ++ "_" ++ show n dicts <- join <$> liftCheck (zipWithM (newDictionaries []) (map (Qualified Nothing) dictNames) constraints) val' <- withBindingGroupVisible $ withTypeClassDictionaries dicts $ check val ty return $ TypedValue True (foldr (Abs . Left) val' dictNames) t where -- | Add a dictionary for the constraint to the scope, and dictionaries -- for all implies superclass instances. newDictionaries :: [(Qualified ProperName, Integer)] -> Qualified Ident -> (Qualified ProperName, [Type]) -> Check [TypeClassDictionaryInScope] newDictionaries path name (className, instanceTy) = do tcs <- gets (typeClasses . checkEnv) let (args, _, superclasses) = fromMaybe (error "newDictionaries: type class lookup failed") $ M.lookup className tcs supDicts <- join <$> zipWithM (\(supName, supArgs) index -> newDictionaries ((supName, index) : path) name (supName, instantiateSuperclass (map fst args) supArgs instanceTy) ) superclasses [0..] return (TypeClassDictionaryInScope name path className instanceTy Nothing TCDRegular : supDicts) instantiateSuperclass :: [String] -> [Type] -> [Type] -> [Type] instantiateSuperclass args supArgs tys = map (replaceAllTypeVars (zip args tys)) supArgs check' val (SaturatedTypeSynonym name args) = do ty <- introduceSkolemScope <=< expandTypeSynonym name $ args check val ty check' val u@(TUnknown _) = do val'@(TypedValue _ _ ty) <- infer val -- Don't unify an unknown with an inferred polytype (val'', ty') <- instantiatePolyTypeWithUnknowns val' ty ty' =?= u return $ TypedValue True val'' ty' check' v@(NumericLiteral (Left _)) t | t == tyInt = return $ TypedValue True v t check' v@(NumericLiteral (Right _)) t | t == tyNumber = return $ TypedValue True v t check' v@(StringLiteral _) t | t == tyString = return $ TypedValue True v t check' v@(CharLiteral _) t | t == tyChar = return $ TypedValue True v t check' v@(BooleanLiteral _) t | t == tyBoolean = return $ TypedValue True v t check' (ArrayLiteral vals) t@(TypeApp a ty) = do a =?= tyArray array <- ArrayLiteral <$> forM vals (`check` ty) return $ TypedValue True array t check' (Abs (Left arg) ret) ty@(TypeApp (TypeApp t argTy) retTy) = do t =?= tyFunction Just moduleName <- checkCurrentModule <$> get ret' <- withBindingGroupVisible $ bindLocalVariables moduleName [(arg, argTy, Defined)] $ check ret retTy return $ TypedValue True (Abs (Left arg) ret') ty check' (Abs (Right _) _) _ = error "Binder was not desugared" check' (App f arg) ret = do f'@(TypedValue _ _ ft) <- infer f (_, app) <- checkFunctionApplication f' ft arg (Just ret) return $ TypedValue True app ret check' v@(Var var) ty = do Just moduleName <- checkCurrentModule <$> get checkVisibility moduleName var repl <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< lookupVariable moduleName $ var ty' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty v' <- subsumes (Just v) repl ty' case v' of Nothing -> throwError . errorMessage $ SubsumptionCheckFailed Just v'' -> return $ TypedValue True v'' ty' check' (SuperClassDictionary className tys) _ = do {- -- Here, we replace a placeholder for a superclass dictionary with a regular -- TypeClassDictionary placeholder. The reason we do this is that it is necessary to have the -- correct super instance dictionaries in scope, and these are not available when the type class -- declaration gets desugared. -} dicts <- getTypeClassDictionaries return $ TypeClassDictionary (className, tys) dicts check' (TypedValue checkType val ty1) ty2 = do Just moduleName <- checkCurrentModule <$> get (kind, args) <- liftCheck $ kindOfWithScopedVars ty1 checkTypeKind kind ty1' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty1 ty2' <- introduceSkolemScope <=< replaceAllTypeSynonyms <=< replaceTypeWildcards $ ty2 val' <- subsumes (Just val) ty1' ty2' case val' of Nothing -> throwError . errorMessage $ SubsumptionCheckFailed Just _ -> do val''' <- if checkType then withScopedTypeVars moduleName args (check val ty2') else return val return $ TypedValue checkType val''' ty2' check' (Case vals binders) ret = do vals' <- mapM infer vals let ts = map (\(TypedValue _ _ t) -> t) vals' binders' <- checkBinders ts ret binders return $ TypedValue True (Case vals' binders') ret check' (IfThenElse cond th el) ty = do cond' <- check cond tyBoolean th' <- check th ty el' <- check el ty return $ TypedValue True (IfThenElse cond' th' el') ty check' (ObjectLiteral ps) t@(TypeApp obj row) | obj == tyObject = do ensureNoDuplicateProperties ps ps' <- checkProperties ps row False return $ TypedValue True (ObjectLiteral ps') t check' (TypeClassDictionaryConstructorApp name ps) t = do ps' <- check' ps t return $ TypedValue True (TypeClassDictionaryConstructorApp name ps') t check' (ObjectUpdate obj ps) t@(TypeApp o row) | o == tyObject = do ensureNoDuplicateProperties ps -- We need to be careful to avoid duplicate labels here. -- We check _obj_ agaist the type _t_ with the types in _ps_ replaced with unknowns. let (propsToCheck, rest) = rowToList row (removedProps, remainingProps) = partition (\(p, _) -> p `elem` map fst ps) propsToCheck us <- zip (map fst removedProps) <$> replicateM (length ps) fresh obj' <- check obj (TypeApp tyObject (rowFromList (us ++ remainingProps, rest))) ps' <- checkProperties ps row True return $ TypedValue True (ObjectUpdate obj' ps') t check' (Accessor prop val) ty = do rest <- fresh val' <- check val (TypeApp tyObject (RCons prop ty rest)) return $ TypedValue True (Accessor prop val') ty check' (Constructor c) ty = do env <- getEnv case M.lookup c (dataConstructors env) of Nothing -> throwError . errorMessage $ UnknownDataConstructor c Nothing Just (_, _, ty1, _) -> do repl <- introduceSkolemScope <=< replaceAllTypeSynonyms $ ty1 _ <- subsumes Nothing repl ty return $ TypedValue True (Constructor c) ty check' (Let ds val) ty = do (ds', val') <- inferLetBinding [] ds val (`check` ty) return $ TypedValue True (Let ds' val') ty check' val ty | containsTypeSynonyms ty = do ty' <- introduceSkolemScope <=< expandAllTypeSynonyms <=< replaceTypeWildcards $ ty check val ty' check' val kt@(KindedType ty kind) = do checkTypeKind kind val' <- check' val ty return $ TypedValue True val' kt check' (PositionedValue pos _ val) ty = warnAndRethrowWithPosition pos $ check' val ty check' val ty = throwError . errorMessage $ ExprDoesNotHaveType val ty containsTypeSynonyms :: Type -> Bool containsTypeSynonyms = everythingOnTypes (||) go where go (SaturatedTypeSynonym _ _) = True go _ = False -- | -- Check the type of a collection of named record fields -- -- The @lax@ parameter controls whether or not every record member has to be provided. For object updates, this is not the case. -- checkProperties :: [(String, Expr)] -> Type -> Bool -> UnifyT Type Check [(String, Expr)] checkProperties ps row lax = let (ts, r') = rowToList row in go ps ts r' where go [] [] REmpty = return [] go [] [] u@(TUnknown _) | lax = return [] | otherwise = do u =?= REmpty return [] go [] [] Skolem{} | lax = return [] go [] ((p, _): _) _ | lax = return [] | otherwise = throwError . errorMessage $ PropertyIsMissing p row go ((p,_):_) [] REmpty = throwError . errorMessage $ PropertyIsMissing p row go ((p,v):ps') ts r = case lookup p ts of Nothing -> do v'@(TypedValue _ _ ty) <- infer v rest <- fresh r =?= RCons p ty rest ps'' <- go ps' ts rest return $ (p, v') : ps'' Just ty -> do v' <- check v ty ps'' <- go ps' (delete (p, ty) ts) r return $ (p, v') : ps'' go _ _ _ = throwError . errorMessage $ ExprDoesNotHaveType (ObjectLiteral ps) (TypeApp tyObject row) -- | -- Check the type of a function application, rethrowing errors to provide a better error message -- checkFunctionApplication :: Expr -> Type -> Expr -> Maybe Type -> UnifyT Type Check (Type, Expr) checkFunctionApplication fn fnTy arg ret = rethrow (onErrorMessages (ErrorInApplication fn fnTy arg)) $ do subst <- unifyCurrentSubstitution <$> UnifyT get checkFunctionApplication' fn (subst $? fnTy) arg (($?) subst <$> ret) -- | -- Check the type of a function application -- checkFunctionApplication' :: Expr -> Type -> Expr -> Maybe Type -> UnifyT Type Check (Type, Expr) checkFunctionApplication' fn (TypeApp (TypeApp tyFunction' argTy) retTy) arg ret = do tyFunction' =?= tyFunction arg' <- check arg argTy case ret of Nothing -> return (retTy, App fn arg') Just ret' -> do Just app' <- subsumes (Just (App fn arg')) retTy ret' return (retTy, app') checkFunctionApplication' fn (ForAll ident ty _) arg ret = do replaced <- replaceVarWithUnknown ident ty checkFunctionApplication fn replaced arg ret checkFunctionApplication' fn u@(TUnknown _) arg ret = do arg' <- do TypedValue _ arg' t <- infer arg (arg'', t') <- instantiatePolyTypeWithUnknowns arg' t return $ TypedValue True arg'' t' let ty = (\(TypedValue _ _ t) -> t) arg' ret' <- maybe fresh return ret u =?= function ty ret' return (ret', App fn arg') checkFunctionApplication' fn (SaturatedTypeSynonym name tyArgs) arg ret = do ty <- introduceSkolemScope <=< expandTypeSynonym name $ tyArgs checkFunctionApplication fn ty arg ret checkFunctionApplication' fn (KindedType ty _) arg ret = checkFunctionApplication fn ty arg ret checkFunctionApplication' fn (ConstrainedType constraints fnTy) arg ret = do dicts <- getTypeClassDictionaries checkFunctionApplication' (foldl App fn (map (flip TypeClassDictionary dicts) constraints)) fnTy arg ret checkFunctionApplication' fn fnTy dict@TypeClassDictionary{} _ = return (fnTy, App fn dict) checkFunctionApplication' _ fnTy arg _ = throwError . errorMessage $ CannotApplyFunction fnTy arg -- | -- Compute the meet of two types, i.e. the most general type which both types subsume. -- TODO: handle constrained types -- meet :: Expr -> Expr -> Type -> Type -> UnifyT Type Check (Expr, Expr, Type) meet e1 e2 (ForAll ident t1 _) t2 = do t1' <- replaceVarWithUnknown ident t1 meet e1 e2 t1' t2 meet e1 e2 t1 (ForAll ident t2 _) = do t2' <- replaceVarWithUnknown ident t2 meet e1 e2 t1 t2' meet e1 e2 t1 t2 = do t1 =?= t2 return (e1, e2, t1) -- | -- Ensure a set of property names and value does not contain duplicate labels -- ensureNoDuplicateProperties :: (MonadError MultipleErrors m) => [(String, Expr)] -> m () ensureNoDuplicateProperties ps = let ls = map fst ps in case ls \\ nub ls of l : _ -> throwError . errorMessage $ DuplicateLabel l Nothing _ -> return ()