{-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE RankNTypes #-} -- | -- This module implements the kind checker -- module Language.PureScript.TypeChecker.Kinds ( kindOf , kindOfWithScopedVars , kindsOf , kindsOfAll ) where import Prelude () import Prelude.Compat import qualified Data.Map as M import Control.Arrow (second) import Control.Monad import Control.Monad.Error.Class (MonadError(..)) import Control.Monad.Writer.Class (MonadWriter(..)) import Control.Monad.State import Language.PureScript.Crash import Language.PureScript.Environment import Language.PureScript.Errors import Language.PureScript.Kinds import Language.PureScript.Names import Language.PureScript.TypeChecker.Monad import Language.PureScript.Types -- | Generate a fresh kind variable freshKind :: (MonadState CheckState m) => m Kind freshKind = do k <- gets checkNextKind modify $ \st -> st { checkNextKind = k + 1 } return $ KUnknown k -- | Update the substitution to solve a kind constraint solveKind :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m) => Int -> Kind -> m () solveKind u k = do occursCheck u k modify $ \cs -> cs { checkSubstitution = (checkSubstitution cs) { substKind = M.insert u k $ substKind $ checkSubstitution cs } } -- | Apply a substitution to a kind substituteKind :: Substitution -> Kind -> Kind substituteKind sub = everywhereOnKinds go where go (KUnknown u) = case M.lookup u (substKind sub) of Nothing -> KUnknown u Just (KUnknown u1) | u1 == u -> KUnknown u1 Just t -> substituteKind sub t go other = other -- | Make sure that an unknown does not occur in a kind occursCheck :: (Functor m, Applicative m, MonadError MultipleErrors m) => Int -> Kind -> m () occursCheck _ KUnknown{} = return () occursCheck u k = void $ everywhereOnKindsM go k where go (KUnknown u') | u == u' = throwError . errorMessage . InfiniteKind $ k go other = return other -- | Unify two kinds unifyKinds :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m) => Kind -> Kind -> m () unifyKinds k1 k2 = do sub <- gets checkSubstitution go (substituteKind sub k1) (substituteKind sub k2) where go (KUnknown u1) (KUnknown u2) | u1 == u2 = return () go (KUnknown u) k = solveKind u k go k (KUnknown u) = solveKind u k go Star Star = return () go Bang Bang = return () go (Row k1') (Row k2') = go k1' k2' go (FunKind k1' k2') (FunKind k3 k4) = do go k1' k3 go k2' k4 go k1' k2' = throwError . errorMessage $ KindsDoNotUnify k1' k2' -- | Infer the kind of a single type kindOf :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m, MonadWriter MultipleErrors m) => Type -> m Kind kindOf ty = fst <$> kindOfWithScopedVars ty -- | Infer the kind of a single type, returning the kinds of any scoped type variables kindOfWithScopedVars :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m, MonadWriter MultipleErrors m) => Type -> m (Kind, [(String, Kind)]) kindOfWithScopedVars ty = rethrow (addHint (ErrorCheckingKind ty)) $ fmap tidyUp . liftUnify $ infer ty where tidyUp ((k, args), sub) = ( starIfUnknown (substituteKind sub k) , map (second (starIfUnknown . substituteKind sub)) args ) -- | Infer the kind of a type constructor with a collection of arguments and a collection of associated data constructors kindsOf :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m, MonadWriter MultipleErrors m) => Bool -> ModuleName -> ProperName 'TypeName -> [(String, Maybe Kind)] -> [Type] -> m Kind kindsOf isData moduleName name args ts = fmap tidyUp . liftUnify $ do tyCon <- freshKind kargs <- replicateM (length args) freshKind rest <- zipWithM freshKindVar args kargs let dict = (name, tyCon) : rest bindLocalTypeVariables moduleName dict $ solveTypes isData ts kargs tyCon where tidyUp (k, sub) = starIfUnknown $ substituteKind sub k freshKindVar :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m) => (String, Maybe Kind) -> Kind -> m (ProperName 'TypeName, Kind) freshKindVar (arg, Nothing) kind = return (ProperName arg, kind) freshKindVar (arg, Just kind') kind = do unifyKinds kind kind' return (ProperName arg, kind') -- | Simultaneously infer the kinds of several mutually recursive type constructors kindsOfAll :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m, MonadWriter MultipleErrors m) => ModuleName -> [(ProperName 'TypeName, [(String, Maybe Kind)], Type)] -> [(ProperName 'TypeName, [(String, Maybe Kind)], [Type])] -> m ([Kind], [Kind]) kindsOfAll moduleName syns tys = fmap tidyUp . liftUnify $ do synVars <- replicateM (length syns) freshKind let dict = zipWith (\(name, _, _) var -> (name, var)) syns synVars bindLocalTypeVariables moduleName dict $ do tyCons <- replicateM (length tys) freshKind let dict' = zipWith (\(name, _, _) tyCon -> (name, tyCon)) tys tyCons bindLocalTypeVariables moduleName dict' $ do data_ks <- zipWithM (\tyCon (_, args, ts) -> do kargs <- replicateM (length args) freshKind argDict <- zipWithM freshKindVar args kargs bindLocalTypeVariables moduleName argDict $ solveTypes True ts kargs tyCon) tyCons tys syn_ks <- zipWithM (\synVar (_, args, ty) -> do kargs <- replicateM (length args) freshKind argDict <- zipWithM freshKindVar args kargs bindLocalTypeVariables moduleName argDict $ solveTypes False [ty] kargs synVar) synVars syns return (syn_ks, data_ks) where tidyUp ((ks1, ks2), sub) = (map (starIfUnknown . substituteKind sub) ks1, map (starIfUnknown . substituteKind sub) ks2) -- | Solve the set of kind constraints associated with the data constructors for a type constructor solveTypes :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m) => Bool -> [Type] -> [Kind] -> Kind -> m Kind solveTypes isData ts kargs tyCon = do ks <- traverse (fmap fst . infer) ts when isData $ do unifyKinds tyCon (foldr FunKind Star kargs) forM_ ks $ \k -> unifyKinds k Star unless isData $ unifyKinds tyCon (foldr FunKind (head ks) kargs) return tyCon -- | Default all unknown kinds to the Star kind of types starIfUnknown :: Kind -> Kind starIfUnknown (KUnknown _) = Star starIfUnknown (Row k) = Row (starIfUnknown k) starIfUnknown (FunKind k1 k2) = FunKind (starIfUnknown k1) (starIfUnknown k2) starIfUnknown k = k -- | Infer a kind for a type infer :: (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m) => Type -> m (Kind, [(String, Kind)]) infer ty = rethrow (addHint (ErrorCheckingKind ty)) $ infer' ty infer' :: forall m . (Functor m, Applicative m, MonadError MultipleErrors m, MonadState CheckState m) => Type -> m (Kind, [(String, Kind)]) infer' (ForAll ident ty _) = do k1 <- freshKind Just moduleName <- checkCurrentModule <$> get (k2, args) <- bindLocalTypeVariables moduleName [(ProperName ident, k1)] $ infer ty unifyKinds k2 Star return (Star, (ident, k1) : args) infer' (KindedType ty k) = do (k', args) <- infer ty unifyKinds k k' return (k', args) infer' other = (, []) <$> go other where go :: Type -> m Kind go (ForAll ident ty _) = do k1 <- freshKind Just moduleName <- checkCurrentModule <$> get k2 <- bindLocalTypeVariables moduleName [(ProperName ident, k1)] $ go ty unifyKinds k2 Star return Star go (KindedType ty k) = do k' <- go ty unifyKinds k k' return k' go TypeWildcard = freshKind go (TypeVar v) = do Just moduleName <- checkCurrentModule <$> get lookupTypeVariable moduleName (Qualified Nothing (ProperName v)) go (Skolem v _ _ _) = do Just moduleName <- checkCurrentModule <$> get lookupTypeVariable moduleName (Qualified Nothing (ProperName v)) go (TypeConstructor v) = do env <- getEnv case M.lookup v (types env) of Nothing -> throwError . errorMessage $ UnknownTypeConstructor v Just (kind, _) -> return kind go (TypeApp t1 t2) = do k0 <- freshKind k1 <- go t1 k2 <- go t2 unifyKinds k1 (FunKind k2 k0) return k0 go REmpty = do k <- freshKind return $ Row k go (RCons _ ty row) = do k1 <- go ty k2 <- go row unifyKinds k2 (Row k1) return $ Row k1 go (ConstrainedType deps ty) = do forM_ deps $ \(className, tys) -> do k <- go $ foldl TypeApp (TypeConstructor (fmap coerceProperName className)) tys unifyKinds k Star k <- go ty unifyKinds k Star return Star go _ = internalError "Invalid argument to infer"