{-# LANGUAGE ExistentialQuantification #-} {-# LANGUAGE FlexibleInstances #-} module Quant.Models.Heston ( Heston (..) ) where import Quant.Time import Quant.YieldCurve import Data.Random import Control.Monad.State import Quant.MonteCarlo import Quant.ContingentClaim -- | 'Heston' represents a Heston model (i.e. stochastic volatility). data Heston = forall a b . (YieldCurve a, YieldCurve b) => Heston { hestonInit :: Double -- ^ Initial asset level. , hestonV0 :: Double -- ^ Initial variance , hestonVF :: Double -- ^ Mean-reversion variance , hestonLambda :: Double -- ^ Vol-vol , hestonCorrel :: Double -- ^ Correlation between processes , hestonMeanRev :: Double -- ^ Mean reversion speed , hestonForwardGen :: a -- ^ 'YieldCurve' to generate forwards , hestonDisc :: b } -- ^ 'YieldCurve' to generate discounts instance Discretize Heston where initialize (Heston s v0 _ _ _ _ _ _) = put (Observables [s, v0], Time 0) {-# INLINE initialize #-} evolve' h@(Heston _ _ vf l rho eta _ _) t2 anti = do (Observables (sState:vState:_), t1) <- get fwd <- forwardGen h t2 let grwth = (fwd - vState/2) * t t = timeDiff t1 t2 resid1 <- lift stdNormal resid2' <- lift stdNormal let op = if anti then (-) else (+) resid2 = rho * resid1 + sqrt (1-rho*rho) * resid2' v' = (sqrt vState `op` (eta/2.0*sqrt t* resid2))^(2 :: Int)-l*(vState-vf)*t-eta*eta*t/4.0 s' = sState * exp (grwth `op` (resid1*sqrt (vState*t))) put (Observables [s', v'], t2) {-# INLINE evolve' #-} discount (Heston _ _ _ _ _ _ _ d) t = disc d t {-# INLINE discount #-} forwardGen (Heston _ _ _ _ _ _ fg _) t2 = do t1 <- gets snd return $ forward fg t1 t2 {-# INLINE forwardGen #-} maxStep _ = 1/12