{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# OPTIONS_GHC -Wall #-} {-| This library provides lists of properties that should hold for common typeclasses. All of these take a 'Proxy' argument that is used to nail down the type for which the typeclass dictionaries should be tested. For example, at GHCi: >>> lawsCheck (monoidLaws (Proxy :: Proxy Ordering)) Monoid: Associative +++ OK, passed 100 tests. Monoid: Left Identity +++ OK, passed 100 tests. Monoid: Right Identity +++ OK, passed 100 tests. Assuming that the 'Arbitrary' instance for 'Ordering' is good, we now have confidence that the 'Monoid' instance for 'Ordering' satisfies the monoid laws. We can check multiple typeclasses with: >>> foldMap (lawsCheck . ($ (Proxy :: Proxy Word))) [jsonLaws,showReadLaws] ToJSON/FromJSON: Encoding Equals Value +++ OK, passed 100 tests. ToJSON/FromJSON: Partial Isomorphism +++ OK, passed 100 tests. Show/Read: Partial Isomorphism +++ OK, passed 100 tests. -} module Test.QuickCheck.Classes ( -- * Running lawsCheck , lawsCheckMany -- * Properties -- ** Ground Types , semigroupLaws , monoidLaws , commutativeMonoidLaws , eqLaws , ordLaws , showReadLaws , jsonLaws , isListLaws , primLaws , storableLaws #if MIN_VERSION_QuickCheck(2,10,0) -- ** Higher-Kinded Types , functorLaws , applicativeLaws , monadLaws , foldableLaws #endif -- * Types , Laws(..) ) where import Test.QuickCheck import Test.QuickCheck.Monadic (monadicIO) import Test.QuickCheck.Property (Property(..)) import Data.Primitive hiding (sizeOf,newArray,copyArray) import Data.Primitive.PrimArray import Data.Proxy import Control.Monad.ST import Control.Monad import Data.Monoid (Endo(..),Sum(..),Dual(..)) import GHC.Ptr (Ptr(..)) import Data.Primitive.Addr (Addr(..)) import Foreign.Marshal.Alloc import System.IO.Unsafe import Data.Semigroup (Semigroup) import GHC.Exts (IsList(fromList,toList,fromListN),Item) import Foreign.Marshal.Array import Foreign.Storable import Text.Read (readMaybe) import Data.Aeson (FromJSON(..),ToJSON(..)) import Data.Functor.Classes import Control.Applicative import Data.Foldable (foldlM,fold,foldMap,foldl',foldr') import Control.Exception (ErrorCall,evaluate,try) import Control.Monad.Trans.Class (lift) import qualified Data.Foldable as F import qualified Data.Aeson as AE import qualified Data.Primitive as P import qualified Data.Semigroup as SG import qualified GHC.OldList as L #if MIN_VERSION_QuickCheck(2,10,0) import Test.QuickCheck.Arbitrary (Arbitrary1(..)) #endif -- | A set of laws associated with a typeclass. data Laws = Laws { lawsTypeclass :: String -- ^ Name of the typeclass whose laws are tested , lawsProperties :: [(String,Property)] -- ^ Pairs of law name and property } -- | A convenience function for working testing properties in GHCi. -- See the test suite of this library for an example of how to -- integrate multiple properties into larger test suite. lawsCheck :: Laws -> IO () lawsCheck (Laws className properties) = do flip foldlMapM properties $ \(name,p) -> do putStr (className ++ ": " ++ name ++ " ") quickCheck p -- | A convenience function for checking multiple typeclass instances -- of multiple types. lawsCheckMany :: [(String,[Laws])] -- ^ Element is type name paired with typeclass laws -> IO () lawsCheckMany xs = do putStrLn "Testing properties for common typeclasses" r <- flip foldlMapM xs $ \(typeName,laws) -> do putStrLn $ "------------" putStrLn $ "-- " ++ typeName putStrLn $ "------------" flip foldlMapM laws $ \(Laws typeClassName properties) -> do flip foldlMapM properties $ \(name,p) -> do putStr (typeClassName ++ ": " ++ name ++ " ") r <- quickCheckResult p return $ case r of Success _ _ _ -> Good _ -> Bad putStrLn "" case r of Good -> putStrLn "All tests succeeded" Bad -> putStrLn "One or more tests failed" data Status = Bad | Good instance Monoid Status where mempty = Good mappend Good x = x mappend Bad _ = Bad foldlMapM :: (Foldable t, Monoid b, Monad m) => (a -> m b) -> t a -> m b foldlMapM f = foldlM (\b a -> fmap (mappend b) (f a)) mempty jsonLaws :: (ToJSON a, FromJSON a, Show a, Arbitrary a, Eq a) => Proxy a -> Laws jsonLaws p = Laws "ToJSON/FromJSON" [ ("Encoding Equals Value", jsonEncodingEqualsValue p) , ("Partial Isomorphism", jsonEncodingPartialIsomorphism p) ] -- | Tests the following properties: -- -- [/Partial Isomorphism/] -- @fromList . toList ≡ id@ -- [/Length Preservation/] -- @fromList xs ≡ fromListN (length xs) xs@ isListLaws :: (IsList a, Show a, Show (Item a), Arbitrary a, Arbitrary (Item a), Eq a) => Proxy a -> Laws isListLaws p = Laws "IsList" [ ("Partial Isomorphism", isListPartialIsomorphism p) , ("Length Preservation", isListLengthPreservation p) ] showReadLaws :: (Show a, Read a, Eq a, Arbitrary a) => Proxy a -> Laws showReadLaws p = Laws "Show/Read" [ ("Partial Isomorphism", showReadPartialIsomorphism p) ] -- | Tests the following properties: -- -- [/Associative/] -- @a <> (b <> c) ≡ (a <> b) <> c@ semigroupLaws :: (Semigroup a, Eq a, Arbitrary a, Show a) => Proxy a -> Laws semigroupLaws p = Laws "Semigroup" [ ("Associative", semigroupAssociative p) ] -- | Tests the following properties: -- -- [/Transitive/] -- @a == b ∧ b == c ⇒ a == c@ -- [/Symmetric/] -- @a == b ⇒ b == a@ -- [/Reflexive/] -- @a == a@ -- -- Some of these properties involve implication. In the case that -- the left hand side of the implication arrow does not hold, we -- do not retry. Consequently, these properties only end up being -- useful when the data type has a small number of inhabitants. eqLaws :: (Eq a, Arbitrary a, Show a) => Proxy a -> Laws eqLaws p = Laws "Eq" [ ("Transitive", eqTransitive p) , ("Symmetric", eqSymmetric p) , ("Reflexive", eqReflexive p) ] -- | Tests the following properties: -- -- [/Transitive/] -- @a ≤ b ∧ b ≤ c ⇒ a ≤ c@ -- [/Comparable/] -- @a ≤ b ∨ a > b@ ordLaws :: (Ord a, Arbitrary a, Show a) => Proxy a -> Laws ordLaws p = Laws "Ord" [ ("Transitive", ordTransitive p) , ("Comparable", ordComparable p) ] -- | Tests the following properties: -- -- [/Associative/] -- @mappend a (mappend b c) ≡ mappend (mappend a b) c@ -- [/Left Identity/] -- @mappend mempty a ≡ a@ -- [/Right Identity/] -- @mappend a mempty ≡ a@ monoidLaws :: (Monoid a, Eq a, Arbitrary a, Show a) => Proxy a -> Laws monoidLaws p = Laws "Monoid" [ ("Associative", monoidAssociative p) , ("Left Identity", monoidLeftIdentity p) , ("Right Identity", monoidRightIdentity p) ] -- | Tests everything from 'monoidProps' plus the following: -- -- [/Commutative/] -- @mappend a b ≡ mappend b a@ commutativeMonoidLaws :: (Monoid a, Eq a, Arbitrary a, Show a) => Proxy a -> Laws commutativeMonoidLaws p = Laws "Commutative Monoid" $ lawsProperties (monoidLaws p) ++ [ ("Commutative", monoidCommutative p) ] -- | Test that a 'Prim' instance obey the several laws. primLaws :: (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Laws primLaws p = Laws "Prim" [ ("ByteArray Set-Get (you get back what you put in)", primSetGetByteArray p) , ("ByteArray Get-Set (putting back what you got out has no effect)", primGetSetByteArray p) , ("ByteArray Set-Set (setting twice is same as setting once)", primSetSetByteArray p) , ("ByteArray List Conversion Roundtrips", primListByteArray p) , ("Addr Set-Get (you get back what you put in)", primSetGetAddr p) , ("Addr Get-Set (putting back what you got out has no effect)", primGetSetAddr p) , ("Addr List Conversion Roundtrips", primListAddr p) ] storableLaws :: (Storable a, Eq a, Arbitrary a, Show a) => Proxy a -> Laws storableLaws p = Laws "Storable" [ ("Set-Get (you get back what you put in)", storableSetGet p) , ("Get-Set (putting back what you got out has no effect)", storableGetSet p) , ("List Conversion Roundtrips", storableList p) ] isListPartialIsomorphism :: forall a. (IsList a, Show a, Arbitrary a, Eq a) => Proxy a -> Property isListPartialIsomorphism _ = myForAllShrink False (\(a :: a) -> ["a = " ++ show a]) "fromList (toList a)" (\a -> fromList (toList a)) "a" (\a -> a) isListLengthPreservation :: forall a. (IsList a, Show (Item a), Arbitrary (Item a), Eq a) => Proxy a -> Property isListLengthPreservation _ = property $ \(xs :: [Item a]) -> (fromList xs :: a) == fromListN (length xs) xs showReadPartialIsomorphism :: forall a. (Show a, Read a, Arbitrary a, Eq a) => Proxy a -> Property showReadPartialIsomorphism _ = property $ \(a :: a) -> readMaybe (show a) == Just a -- TODO: improve the quality of the error message if -- something does not pass this test. jsonEncodingEqualsValue :: forall a. (ToJSON a, Show a, Arbitrary a) => Proxy a -> Property jsonEncodingEqualsValue _ = property $ \(a :: a) -> case AE.decode (AE.encode a) of Nothing -> False Just (v :: AE.Value) -> v == toJSON a jsonEncodingPartialIsomorphism :: forall a. (ToJSON a, FromJSON a, Show a, Eq a, Arbitrary a) => Proxy a -> Property jsonEncodingPartialIsomorphism _ = property $ \(a :: a) -> AE.decode (AE.encode a) == Just a eqTransitive :: forall a. (Show a, Eq a, Arbitrary a) => Proxy a -> Property eqTransitive _ = property $ \(a :: a) b c -> case a == b of True -> case b == c of True -> a == c False -> a /= c False -> case b == c of True -> a /= c False -> True -- Technically, this tests something a little stronger than it is supposed to. -- But that should be alright since this additional strength is implied by -- the rest of the Ord laws. ordTransitive :: forall a. (Show a, Ord a, Arbitrary a) => Proxy a -> Property ordTransitive _ = property $ \(a :: a) b c -> case (compare a b, compare b c) of (LT,LT) -> a < c (LT,EQ) -> a < c (LT,GT) -> True (EQ,LT) -> a < c (EQ,EQ) -> a == c (EQ,GT) -> a > c (GT,LT) -> True (GT,EQ) -> a > c (GT,GT) -> a > c ordComparable :: forall a. (Show a, Ord a, Arbitrary a) => Proxy a -> Property ordComparable _ = property $ \(a :: a) b -> a > b || b >= a eqSymmetric :: forall a. (Show a, Eq a, Arbitrary a) => Proxy a -> Property eqSymmetric _ = property $ \(a :: a) b -> case a == b of True -> b == a False -> b /= a eqReflexive :: forall a. (Show a, Eq a, Arbitrary a) => Proxy a -> Property eqReflexive _ = property $ \(a :: a) -> a == a semigroupAssociative :: forall a. (Semigroup a, Eq a, Arbitrary a, Show a) => Proxy a -> Property semigroupAssociative _ = property $ \(a :: a) b c -> a SG.<> (b SG.<> c) == (a SG.<> b) SG.<> c monoidAssociative :: forall a. (Monoid a, Eq a, Arbitrary a, Show a) => Proxy a -> Property monoidAssociative _ = myForAllShrink True (\(a :: a,b,c) -> ["a = " ++ show a, "b = " ++ show b, "c = " ++ show c]) "mappend a (mappend b c)" (\(a,b,c) -> mappend a (mappend b c)) "mappend (mappend a b) c" (\(a,b,c) -> mappend (mappend a b) c) monoidLeftIdentity :: forall a. (Monoid a, Eq a, Arbitrary a, Show a) => Proxy a -> Property monoidLeftIdentity _ = myForAllShrink False (\(a :: a) -> ["a = " ++ show a]) "mappend mempty a" (\a -> mappend mempty a) "a" (\a -> a) monoidRightIdentity :: forall a. (Monoid a, Eq a, Arbitrary a, Show a) => Proxy a -> Property monoidRightIdentity _ = myForAllShrink False (\(a :: a) -> ["a = " ++ show a]) "mappend a mempty" (\a -> mappend a mempty) "a" (\a -> a) monoidCommutative :: forall a. (Monoid a, Eq a, Arbitrary a, Show a) => Proxy a -> Property monoidCommutative _ = property $ \(a :: a) b -> mappend a b == mappend b a primListByteArray :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primListByteArray _ = property $ \(as :: [a]) -> as == toList (fromList as :: PrimArray a) primListAddr :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primListAddr _ = property $ \(as :: [a]) -> unsafePerformIO $ do let len = L.length as ptr@(Ptr addr#) :: Ptr a <- mallocBytes (len * P.sizeOf (undefined :: a)) let addr = Addr addr# let go :: Int -> [a] -> IO () go !ix xs = case xs of [] -> return () (x : xsNext) -> do writeOffAddr addr ix x go (ix + 1) xsNext go 0 as let rebuild :: Int -> IO [a] rebuild !ix = if ix < len then (:) <$> readOffAddr addr ix <*> rebuild (ix + 1) else return [] asNew <- rebuild 0 free ptr return (as == asNew) primSetGetByteArray :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primSetGetByteArray _ = property $ \(a :: a) len -> (len > 0) ==> do ix <- choose (0,len - 1) return $ runST $ do arr <- newPrimArray len writePrimArray arr ix a a' <- readPrimArray arr ix return (a == a') primGetSetByteArray :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primGetSetByteArray _ = property $ \(as :: [a]) -> (not (L.null as)) ==> do let arr1 = fromList as :: PrimArray a len = L.length as ix <- choose (0,len - 1) arr2 <- return $ runST $ do marr <- newPrimArray len copyPrimArray marr 0 arr1 0 len a <- readPrimArray marr ix writePrimArray marr ix a unsafeFreezePrimArray marr return (arr1 == arr2) primSetSetByteArray :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primSetSetByteArray _ = property $ \(a :: a) (as :: [a]) -> (not (L.null as)) ==> do let arr1 = fromList as :: PrimArray a len = L.length as ix <- choose (0,len - 1) (arr2,arr3) <- return $ runST $ do marr2 <- newPrimArray len copyPrimArray marr2 0 arr1 0 len writePrimArray marr2 ix a marr3 <- newPrimArray len copyMutablePrimArray marr3 0 marr2 0 len arr2 <- unsafeFreezePrimArray marr2 writePrimArray marr3 ix a arr3 <- unsafeFreezePrimArray marr3 return (arr2,arr3) return (arr2 == arr3) primSetGetAddr :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primSetGetAddr _ = property $ \(a :: a) len -> (len > 0) ==> do ix <- choose (0,len - 1) return $ unsafePerformIO $ do ptr@(Ptr addr#) :: Ptr a <- mallocBytes (len * P.sizeOf (undefined :: a)) let addr = Addr addr# writeOffAddr addr ix a a' <- readOffAddr addr ix free ptr return (a == a') primGetSetAddr :: forall a. (Prim a, Eq a, Arbitrary a, Show a) => Proxy a -> Property primGetSetAddr _ = property $ \(as :: [a]) -> (not (L.null as)) ==> do let arr1 = fromList as :: PrimArray a len = L.length as ix <- choose (0,len - 1) arr2 <- return $ unsafePerformIO $ do ptr@(Ptr addr#) :: Ptr a <- mallocBytes (len * P.sizeOf (undefined :: a)) let addr = Addr addr# copyPrimArrayToPtr ptr arr1 0 len a :: a <- readOffAddr addr ix writeOffAddr addr ix a marr <- newPrimArray len copyPtrToMutablePrimArray marr 0 ptr len free ptr unsafeFreezePrimArray marr return (arr1 == arr2) storableSetGet :: forall a. (Storable a, Eq a, Arbitrary a, Show a) => Proxy a -> Property storableSetGet _ = property $ \(a :: a) len -> (len > 0) ==> do ix <- choose (0,len - 1) return $ unsafePerformIO $ do ptr :: Ptr a <- mallocArray len pokeElemOff ptr ix a a' <- peekElemOff ptr ix free ptr return (a == a') storableGetSet :: forall a. (Storable a, Eq a, Arbitrary a, Show a) => Proxy a -> Property storableGetSet _ = property $ \(as :: [a]) -> (not (L.null as)) ==> do let len = L.length as ix <- choose (0,len - 1) return $ unsafePerformIO $ do ptrA <- newArray as ptrB <- mallocArray len copyArray ptrB ptrA len a <- peekElemOff ptrA ix pokeElemOff ptrA ix a res <- arrayEq ptrA ptrB len free ptrA free ptrB return res storableList :: forall a. (Storable a, Eq a, Arbitrary a, Show a) => Proxy a -> Property storableList _ = property $ \(as :: [a]) -> unsafePerformIO $ do let len = L.length as ptr <- newArray as let rebuild :: Int -> IO [a] rebuild !ix = if ix < len then (:) <$> peekElemOff ptr ix <*> rebuild (ix + 1) else return [] asNew <- rebuild 0 free ptr return (as == asNew) arrayEq :: forall a. (Storable a, Eq a) => Ptr a -> Ptr a -> Int -> IO Bool arrayEq ptrA ptrB len = go 0 where go !i = if i < len then do a <- peekElemOff ptrA i b <- peekElemOff ptrB i if a == b then go (i + 1) else return False else return True #if MIN_VERSION_QuickCheck(2,10,0) -- | Tests the following applicative properties: -- -- [/Identity/] -- @'fmap' 'id' ≡ 'id'@ -- [/Composition/] -- @fmap (f . g) ≡ 'fmap' f . 'fmap' g@ -- [/Const/] -- @(<$) ≡ 'fmap' 'const'@ functorLaws :: (Functor f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Laws functorLaws p = Laws "Functor" [ ("Identity", functorIdentity p) , ("Composition", functorComposition p) , ("Const", functorConst p) ] -- | Tests the following applicative properties: -- -- [/Identity/] -- @'pure' 'id' '<*>' v ≡ v@ -- [/Composition/] -- @'pure' (.) '<*>' u '<*>' v '<*>' w ≡ u '<*>' (v '<*>' w)@ -- [/Homomorphism/] -- @'pure' f '<*>' 'pure' x ≡ 'pure' (f x)@ -- [/Interchange/] -- @u '<*>' 'pure' y ≡ 'pure' ('$' y) '<*>' u@ -- [/LiftA2 (1)/] -- @('<*>') ≡ 'liftA2' 'id'@ applicativeLaws :: (Applicative f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Laws applicativeLaws p = Laws "Applicative" [ ("Identity", applicativeIdentity p) , ("Composition", applicativeComposition p) , ("Homomorphism", applicativeHomomorphism p) , ("Interchange", applicativeInterchange p) , ("LiftA2 Part 1", applicativeLiftA2_1 p) -- todo: liftA2 part 2, we need an equation of two variables for this ] -- | Tests the following monadic properties: -- -- [/Left Identity/] -- @'return' a '>>=' k ≡ k a@ -- [/Right Identity/] -- @m '>>=' 'return' ≡ m@ -- [/Associativity/] -- @m '>>=' (\\x -> k x '>>=' h) ≡ (m '>>=' k) '>>=' h@ -- [/Return/] -- @'pure' ≡ 'return'@ -- [/Ap/] -- @('<*>') ≡ 'ap'@ monadLaws :: (Monad f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Laws monadLaws p = Laws "Monad" [ ("Left Identity", monadLeftIdentity p) , ("Right Identity", monadRightIdentity p) , ("Associativity", monadAssociativity p) , ("Return", monadReturn p) , ("Ap", monadAp p) ] -- | Tests the following 'Foldable' properties: -- -- [/fold/] -- @'fold' ≡ 'foldMap' 'id'@ -- [/foldMap/] -- @'foldMap' f ≡ 'foldr' ('mappend' . f) 'mempty'@ -- [/foldr/] -- @'foldr' f z t ≡ 'appEndo' ('foldMap' ('Endo' . f) t ) z@ -- [/foldr'/] -- @'foldr'' f z0 xs = let f\' k x z = k '$!' f x z in 'foldl' f\' 'id' xs z0@ -- [/foldl/] -- @'foldl' f z t ≡ 'appEndo' ('getDual' ('foldMap' ('Dual' . 'Endo' . 'flip' f) t)) z@ -- [/foldl'/] -- @'foldl'' f z0 xs = let f' x k z = k '$!' f z x in 'foldr' f\' 'id' xs z0@ -- [/toList/] -- @'F.toList' ≡ 'foldr' (:) []@ -- [/null/] -- @'null' ≡ 'foldr' ('const' ('const' 'False')) 'True'@ -- [/length/] -- @'length' ≡ getSum . foldMap ('const' ('Sum' 1))@ -- -- Note that this checks to ensure that @foldl\'@ and @foldr\'@ -- are suitably strict. foldableLaws :: (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Laws foldableLaws = foldableLawsInternal foldableLawsInternal :: forall f. (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Laws foldableLawsInternal p = Laws "Foldable" [ (,) "fold" $ property $ \(Apply (a :: f (Sum Integer))) -> fold a == foldMap id a , (,) "foldMap" $ property $ \(Apply (a :: f Integer)) (e :: Equation) -> let f = Sum . runEquation e in foldMap f a == foldr (mappend . f) mempty a , (,) "foldr" $ property $ \(e :: EquationTwo) (z :: Integer) (Apply (t :: f Integer)) -> let f = runEquationTwo e in foldr f z t == appEndo (foldMap (Endo . f) t) z , (,) "foldr'" (foldableFoldr' p) , (,) "foldl" $ property $ \(e :: EquationTwo) (z :: Integer) (Apply (t :: f Integer)) -> let f = runEquationTwo e in foldl f z t == appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z , (,) "foldl'" (foldableFoldl' p) , (,) "toList" $ property $ \(Apply (t :: f Integer)) -> eq1 (F.toList t) (foldr (:) [] t) , (,) "null" $ property $ \(Apply (t :: f Integer)) -> null t == foldr (const (const False)) True t , (,) "length" $ property $ \(Apply (t :: f Integer)) -> length t == getSum (foldMap (const (Sum 1)) t) ] foldableFoldl' :: forall f. (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property foldableFoldl' _ = property $ \(_ :: ChooseSecond) (_ :: LastNothing) (Apply (xs :: f (Bottom Integer))) -> monadicIO $ do let f :: Integer -> Bottom Integer -> Integer f a b = case b of BottomUndefined -> error "foldableFoldl' example" BottomValue v -> if even v then a else v z0 = 0 r1 <- lift $ do let f' x k z = k $! f z x e <- try (evaluate (foldr f' id xs z0)) case e of Left (_ :: ErrorCall) -> return Nothing Right i -> return (Just i) r2 <- lift $ do e <- try (evaluate (foldl' f z0 xs)) case e of Left (_ :: ErrorCall) -> return Nothing Right i -> return (Just i) return (r1 == r2) foldableFoldr' :: forall f. (Foldable f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property foldableFoldr' _ = property $ \(_ :: ChooseFirst) (_ :: LastNothing) (Apply (xs :: f (Bottom Integer))) -> monadicIO $ do let f :: Bottom Integer -> Integer -> Integer f a b = case a of BottomUndefined -> error "foldableFoldl' example" BottomValue v -> if even v then v else b z0 = 0 r1 <- lift $ do let f' k x z = k $! f x z e <- try (evaluate (foldl f' id xs z0)) case e of Left (_ :: ErrorCall) -> return Nothing Right i -> return (Just i) r2 <- lift $ do e <- try (evaluate (foldr' f z0 xs)) case e of Left (_ :: ErrorCall) -> return Nothing Right i -> return (Just i) return (r1 == r2) data ChooseSecond = ChooseSecond deriving (Eq) data ChooseFirst = ChooseFirst deriving (Eq) data LastNothing = LastNothing deriving (Eq) data Bottom a = BottomUndefined | BottomValue a deriving (Eq) instance Show ChooseFirst where show ChooseFirst = "\\a b -> if even a then a else b" instance Show ChooseSecond where show ChooseSecond = "\\a b -> if even b then a else b" instance Show LastNothing where show LastNothing = "0" instance Show a => Show (Bottom a) where show x = case x of BottomUndefined -> "undefined" BottomValue a -> show a instance Arbitrary ChooseSecond where arbitrary = pure ChooseSecond instance Arbitrary ChooseFirst where arbitrary = pure ChooseFirst instance Arbitrary LastNothing where arbitrary = pure LastNothing instance Arbitrary a => Arbitrary (Bottom a) where arbitrary = fmap maybeToBottom arbitrary shrink x = map maybeToBottom (shrink (bottomToMaybe x)) bottomToMaybe :: Bottom a -> Maybe a bottomToMaybe BottomUndefined = Nothing bottomToMaybe (BottomValue a) = Just a maybeToBottom :: Maybe a -> Bottom a maybeToBottom Nothing = BottomUndefined maybeToBottom (Just a) = BottomValue a data Apply f a = Apply { getApply :: f a } instance (Eq1 f, Eq a) => Eq (Apply f a) where Apply a == Apply b = eq1 a b data LinearEquation = LinearEquation { _linearEquationLinear :: Integer , _linearEquationConstant :: Integer } deriving (Eq) data LinearEquationM m = LinearEquationM (m LinearEquation) (m LinearEquation) runLinearEquation :: Integer -> LinearEquation -> Integer runLinearEquation x (LinearEquation a b) = a * x + b runLinearEquationM :: Functor m => LinearEquationM m -> Integer -> m Integer runLinearEquationM (LinearEquationM e1 e2) i = if odd i then fmap (runLinearEquation i) e1 else fmap (runLinearEquation i) e2 instance Eq1 m => Eq (LinearEquationM m) where LinearEquationM a1 b1 == LinearEquationM a2 b2 = eq1 a1 a2 && eq1 b1 b2 showLinear :: Int -> LinearEquation -> ShowS showLinear _ (LinearEquation a b) = shows a . showString " * x + " . shows b showLinearList :: [LinearEquation] -> ShowS showLinearList xs = appEndo $ mconcat $ [Endo (showChar '[')] ++ L.intersperse (Endo (showChar ',')) (map (Endo . showLinear 0) xs) ++ [Endo (showChar ']')] instance Show1 m => Show (LinearEquationM m) where show (LinearEquationM a b) = (\f -> f "") $ showString "\\x -> if odd x then " . liftShowsPrec showLinear showLinearList 0 a . showString " else " . liftShowsPrec showLinear showLinearList 0 b instance Arbitrary1 m => Arbitrary (LinearEquationM m) where arbitrary = liftA2 LinearEquationM arbitrary1 arbitrary1 shrink (LinearEquationM a b) = concat [ map (\x -> LinearEquationM x b) (shrink1 a) , map (\x -> LinearEquationM a x) (shrink1 b) ] instance Arbitrary LinearEquation where arbitrary = do (a,b) <- arbitrary return (LinearEquation (abs a) (abs b)) shrink (LinearEquation a b) = let xs = shrink (a,b) in map (\(x,y) -> LinearEquation (abs x) (abs y)) xs -- this is a quadratic equation data Equation = Equation Integer Integer Integer deriving (Eq) -- This show instance is does not actually provide a -- way to create an equation. Instead, it makes it look -- like a lambda. instance Show Equation where show (Equation a b c) = "\\x -> " ++ show a ++ " * x ^ 2 + " ++ show b ++ " * x + " ++ show c instance Arbitrary Equation where arbitrary = do (a,b,c) <- arbitrary return (Equation (abs a) (abs b) (abs c)) shrink (Equation a b c) = let xs = shrink (a,b,c) in map (\(x,y,z) -> Equation (abs x) (abs y) (abs z)) xs runEquation :: Equation -> Integer -> Integer runEquation (Equation a b c) x = a * x ^ (2 :: Integer) + b * x + c -- linear equation of two variables data EquationTwo = EquationTwo Integer Integer deriving (Eq) -- This show instance is does not actually provide a -- way to create an EquationTwo. Instead, it makes it look -- like a lambda that takes two variables. instance Show EquationTwo where show (EquationTwo a b) = "\\x y -> " ++ show a ++ " * x + " ++ show b ++ " * y" instance Arbitrary EquationTwo where arbitrary = do (a,b) <- arbitrary return (EquationTwo (abs a) (abs b)) shrink (EquationTwo a b) = let xs = shrink (a,b) in map (\(x,y) -> EquationTwo (abs x) (abs y)) xs runEquationTwo :: EquationTwo -> Integer -> Integer -> Integer runEquationTwo (EquationTwo a b) x y = a * x + b * y -- This show instance is intentionally a little bit wrong. -- We don't wrap the result in Apply since the end user -- should not be made aware of the Apply wrapper anyway. instance (Show1 f, Show a) => Show (Apply f a) where showsPrec p = showsPrec1 p . getApply instance (Arbitrary1 f, Arbitrary a) => Arbitrary (Apply f a) where arbitrary = fmap Apply arbitrary1 shrink = map Apply . shrink1 . getApply functorIdentity :: forall f. (Functor f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property functorIdentity _ = property $ \(Apply (a :: f Integer)) -> eq1 (fmap id a) a func1 :: Integer -> (Integer,Integer) func1 i = (div (i + 5) 3, i * i - 2 * i + 1) func2 :: (Integer,Integer) -> (Bool,Either Ordering Integer) func2 (a,b) = (odd a, if even a then Left (compare a b) else Right (b + 2)) functorComposition :: forall f. (Functor f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property functorComposition _ = property $ \(Apply (a :: f Integer)) -> eq1 (fmap func2 (fmap func1 a)) (fmap (func2 . func1) a) functorConst :: forall f. (Functor f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property functorConst _ = property $ \(Apply (a :: f Integer)) -> eq1 (fmap (const 'X') a) ('X' <$ a) applicativeIdentity :: forall f. (Applicative f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property applicativeIdentity _ = property $ \(Apply (a :: f Integer)) -> eq1 (pure id <*> a) a applicativeComposition :: forall f. (Applicative f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property applicativeComposition _ = property $ \(Apply (u' :: f Equation)) (Apply (v' :: f Equation)) (Apply (w :: f Integer)) -> let u = fmap runEquation u' v = fmap runEquation v' in eq1 (pure (.) <*> u <*> v <*> w) (u <*> (v <*> w)) applicativeHomomorphism :: forall f. (Applicative f, Eq1 f, Show1 f) => Proxy f -> Property applicativeHomomorphism _ = property $ \(e :: Equation) (a :: Integer) -> let f = runEquation e in eq1 (pure f <*> pure a) (pure (f a) :: f Integer) applicativeInterchange :: forall f. (Applicative f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property applicativeInterchange _ = property $ \(Apply (u' :: f Equation)) (y :: Integer) -> let u = fmap runEquation u' in eq1 (u <*> pure y) (pure ($ y) <*> u) applicativeLiftA2_1 :: forall f. (Applicative f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property applicativeLiftA2_1 _ = property $ \(Apply (f' :: f Equation)) (Apply (x :: f Integer)) -> let f = fmap runEquation f' in eq1 (liftA2 id f x) (f <*> x) monadLeftIdentity :: forall f. (Monad f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property monadLeftIdentity _ = property $ \(k' :: LinearEquationM f) (a :: Integer) -> let k = runLinearEquationM k' in eq1 (return a >>= k) (k a) monadRightIdentity :: forall f. (Monad f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property monadRightIdentity _ = property $ \(Apply (m :: f Integer)) -> eq1 (m >>= return) m monadAssociativity :: forall f. (Monad f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property monadAssociativity _ = property $ \(Apply (m :: f Integer)) (k' :: LinearEquationM f) (h' :: LinearEquationM f) -> let k = runLinearEquationM k' h = runLinearEquationM h' in eq1 (m >>= (\x -> k x >>= h)) ((m >>= k) >>= h) monadReturn :: forall f. (Monad f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property monadReturn _ = property $ \(x :: Integer) -> eq1 (return x) (pure x :: f Integer) monadAp :: forall f. (Monad f, Eq1 f, Show1 f, Arbitrary1 f) => Proxy f -> Property monadAp _ = property $ \(Apply (f' :: f Equation)) (Apply (x :: f Integer)) -> let f = fmap runEquation f' in eq1 (ap f x) (f <*> x) #endif myForAllShrink :: (Arbitrary a, Show b, Eq b) => Bool -> (a -> [String]) -> String -> (a -> b) -> String -> (a -> b) -> Property myForAllShrink displayRhs showInputs name1 calc1 name2 calc2 = again $ MkProperty $ arbitrary >>= \x -> unProperty $ shrinking shrink x $ \x' -> let b1 = calc1 x' b2 = calc2 x' sb1 = show b1 sb2 = show b2 description = " Description: " ++ name1 ++ " = " ++ name2 err = description ++ "\n" ++ unlines (map (" " ++) (showInputs x)) ++ " " ++ name1 ++ " = " ++ sb1 ++ (if displayRhs then "\n " ++ name2 ++ " = " ++ sb2 else "") in counterexample err (b1 == b2)