h$=      !"#$%&'()*+,-./0123456789:;< None0quickcheck-classes#Tests the following alt properties:  Associativity(a = b) = c D a = (b = c)Left Distributivityf > (a = b) D (f > a) = (f > b)0None1quickcheck-classes#Tests the following alt properties:  LiftF2 (1)(?) D @ A AssociativityB (C) u ? v ? w D u ? (v ? w)1(c) 2019 Andrew LelechenkoBSD3None?2quickcheck-classes Test that a D instance obey several laws. Check that E is an inverse of times:&y /= 0 => (x * y) `divide` y == Just x,,y /= 0, x `divide` y == Just z => x == z * y. Check that F= is a common divisor and is a multiple of any common divisor:x /= 0, y /= 0 => isJust (x `divide` gcd x y) && isJust (y `divide` gcd x y),1z /= 0 => isJust (gcd (x * z) (y * z) `divide` z). Check that G= is a common multiple and is a factor of any common multiple:x /= 0, y /= 0 => isJust (lcm x y `divide` x) && isJust (lcm x y `divide` y),x /= 0, y /= 0, isJust (z `divide` x), isJust (z `divide` y) => isJust (z `divide` lcm x y). Check that F of H4 numbers is a unit of the semiring (has an inverse):2y /= 0, coprime x y => isJust (1 `divide` gcd x y).3quickcheck-classes Test that a I* instance obey laws of a Euclidean domain.7y /= 0, r == x `rem` y => r == 0 || degree r < degree y,1y /= 0, (q, r) == x `quotRem` y => x == q * y + r,-y /= 0 => x `quot` x y == fst (x `quotRem` y),,y /= 0 => x `rem` x y == snd (x `quotRem` y).23NoneJKLMNOPQRSTUVWXNone #4quickcheck-classesTests the following properties: Partial Isomorphismdecode . encode D JustEncoding Equals Valuedecode . encode D Just . toJSON8Note that in the second property, the type of decode is ByteString -> Value, not ByteString -> a4(c) 2019 Andrew LelechenkoBSD3None 5quickcheck-classes Test that a   instance obey several laws.5 None 6quickcheck-classes#Tests the following alt properties:  Left IdentityY = m D mRight Identitym = Y D m7quickcheck-classesTests everything from altLaws, plus the following:  CongruencyY D Z67 None  Q8quickcheck-classes Test that a [ instance obey the several laws.8 None 9quickcheck-classesTests the following properties: Additive Inverse\ a ] a D 07Note that this does not test any of the laws tested by  .9NoneT:quickcheck-classesTests the following ^ properties:  Associativityf `_` (g `_ ` h) D (f `_` g) `_` hNote: This property test is only available when this package is built with  base-4.9+ or transformers-0.5+.;quickcheck-classesTests everything from : plus the following:  Commutativef `_ ` g D g `_` fNote: This property test is only available when this package is built with  base-4.9+ or transformers-0.5+.:; None<quickcheck-classesTests the following properties: Additive Commutativity a + b D b + aAdditive Left Identity 0 + a D aAdditive Right Identity a + 0 D aMultiplicative Associativitya * (b * c) D (a * b) * cMultiplicative Left Identity 1 * a D aMultiplicative Right Identity a * 1 D a-Multiplication Left Distributes Over Additiona * (b + c) D (a * b) + (a * c).Multiplication Right Distributes Over Addition(a + b) * c D (a * c) + (b * c) Multiplicative Left Annihilation 0 * a D 0!Multiplicative Right Annihilation a * 0 D 0Also tests that ` is a homomorphism of semirings: FromNatural Maps Zero` 0 = aFromNatural Maps One` 1 = bFromNatural Maps Plus` (a + b) = ` a + ` bFromNatural Maps Times` (a * b) = ` a * ` b<None#=  !"#$%&'()*+/.-,0123456789:;<=&%+4$#8 <923 *)01"'(67! :;5/.-, !"#$%&'()*)+),-./0123456789:;<=>?@ABCDCEFGHIHJKLKMNOPQRSRTUVWXWYWZWZ[\]^_` a b c def ghijklgmngmojpqjprjpstuvtuwtuxtuytuztu{9|9}9~999999999999gjpttggttt1quickcheck-classes-0.6.5.0-6E3VOS2XkhD8MiMCtiIbH6Test.QuickCheck.ClassesTest.QuickCheck.Classes.AltTest.QuickCheck.Classes.Apply!Test.QuickCheck.Classes.EuclideanTest.QuickCheck.Classes.IsListTest.QuickCheck.Classes.JsonTest.QuickCheck.Classes.MVectorVector.UnboxedMVectorTest.QuickCheck.Classes.PlusTest.QuickCheck.Classes.PrimTest.QuickCheck.Classes.Ring Test.QuickCheck.Classes.Semiring semiringLaws$Test.QuickCheck.Classes.Semigroupoid6quickcheck-classes-base-0.6.2.0-JgwyyzL4EWq3iaUyZuDiWOTest.QuickCheck.Classes.Base lawsCheckMany lawsCheckOne lawsCheckProxy1Proxy2#Test.QuickCheck.Classes.TraversabletraversableLaws Test.QuickCheck.Classes.Storable storableLaws Test.QuickCheck.Classes.ShowRead showReadLawsTest.QuickCheck.Classes.ShowshowLaws!Test.QuickCheck.Classes.SemigroupexponentialSemigroupLawsrectangularBandSemigroupLawsidempotentSemigroupLawscommutativeSemigroupLaws semigroupLawsTest.QuickCheck.Classes.OrdordLawsTest.QuickCheck.Classes.NumnumLawsTest.QuickCheck.Classes.MonoidsemigroupMonoidLawscommutativeMonoidLaws monoidLaws Test.QuickCheck.Classes.MonadZip monadZipLaws!Test.QuickCheck.Classes.MonadPlus monadPlusLawsTest.QuickCheck.Classes.Monad monadLawsTest.QuickCheck.Classes.IxixLaws#Test.QuickCheck.Classes.AlternativealternativeLaws#Test.QuickCheck.Classes.ApplicativeapplicativeLaws#Test.QuickCheck.Classes.Base.IsList isListLaws"Test.QuickCheck.Classes.BifoldablebifoldableLaws!Test.QuickCheck.Classes.Bifunctor bifunctorLaws%Test.QuickCheck.Classes.BitraversablebitraversableLawsTest.QuickCheck.Classes.BitsbitsLaws Test.QuickCheck.Classes.CategorycommutativeCategoryLaws categoryLaws%Test.QuickCheck.Classes.ContravariantcontravariantLawsTest.QuickCheck.Classes.EnumboundedEnumLawsenumLawsTest.QuickCheck.Classes.EqsubstitutiveEqLawseqLaws Test.QuickCheck.Classes.Foldable foldableLawsTest.QuickCheck.Classes.Functor functorLawsTest.QuickCheck.Classes.Generic generic1Laws genericLaws Test.QuickCheck.Classes.Integral integralLaws Test.QuickCheck.Classes.InternallawsProperties lawsTypeclassLawsaltLaws applyLaws gcdDomainLaws euclideanLawsjsonLaws muvectorLawsplusLawsextendedPlusLawsprimLawsringLawssemigroupoidLawscommutativeSemigroupoidLaws*semigroupoids-5.3.5-4VXEKygpgR48yFJmBKDNcTData.Functor.Altbase Data.Functor<$>Data.Functor.Bind.Class<.>liftF2GHC.Baseidfmap.$semirings-0.6-Ie9E58zo7qVHipIcLmYFZeData.Euclidean GcdDomaindividegcdlcmcoprime Euclidean mapMaybeMProp mapMaybeProp filterMProp filterPropreplicateMProp replicateProp generateMProp generateProp traverseProp imapMPropimapPropmapProp foldlMProp foldlProp foldrPropData.Functor.Pluszeroempty'primitive-0.7.1.0-Jxsyd70oUttYiCXCa0HqVData.Primitive.TypesPrim Data.Semiringnegate+Data.Semigroupoid Semigroupoido fromNaturalone