-- Theory exploration which works on a schema at a time. {-# OPTIONS_HADDOCK hide #-} {-# LANGUAGE RecordWildCards, FlexibleContexts, PatternGuards, TupleSections, MultiParamTypeClasses, FlexibleInstances #-} module QuickSpec.Internal.Explore.Schemas where import qualified Data.Map.Strict as Map import Data.Map(Map) import QuickSpec.Internal.Prop import QuickSpec.Internal.Pruning import QuickSpec.Internal.Term import QuickSpec.Internal.Type import QuickSpec.Internal.Testing import QuickSpec.Internal.Utils import QuickSpec.Internal.Terminal import qualified QuickSpec.Internal.Explore.Terms as Terms import QuickSpec.Internal.Explore.Terms(Terms) import Control.Monad.Trans.State.Strict hiding (State) import Data.List import Data.Ord import Data.Lens.Light import qualified Data.Set as Set import Data.Set(Set) import Data.Maybe import Control.Monad import Twee.Label -- | Constrains how variables of a particular type may occur in a term. data VariableUse = UpTo Int -- ^ @UpTo n@: terms may contain up to @n@ distinct variables of this type -- (in some cases, laws with more variables may still be found) | Linear -- ^ Each variable in the term must be distinct deriving (Eq, Show) data Schemas testcase result fun norm = Schemas { sc_use :: Type -> VariableUse, sc_instantiate_singleton :: Term fun -> Bool, sc_empty :: Terms testcase result (Term fun) norm, sc_classes :: Terms testcase result (Term fun) norm, sc_instantiated :: Set (Term fun), sc_instances :: Map (Term fun) (Terms testcase result (Term fun) norm) } classes = lens sc_classes (\x y -> y { sc_classes = x }) use = lens sc_use (\x y -> y { sc_use = x }) instances = lens sc_instances (\x y -> y { sc_instances = x }) instantiated = lens sc_instantiated (\x y -> y { sc_instantiated = x }) instance_ :: Ord fun => Term fun -> Lens (Schemas testcase result fun norm) (Terms testcase result (Term fun) norm) instance_ t = reading (\Schemas{..} -> keyDefault t sc_empty # instances) initialState :: (Type -> VariableUse) -> (Term fun -> Bool) -> (Term fun -> testcase -> result) -> Schemas testcase result fun norm initialState use inst eval = Schemas { sc_use = use, sc_instantiate_singleton = inst, sc_empty = Terms.initialState eval, sc_classes = Terms.initialState eval, sc_instantiated = Set.empty, sc_instances = Map.empty } data Result fun = Accepted { result_props :: [Prop (Term fun)] } | Rejected { result_props :: [Prop (Term fun)] } -- The schema is represented as a term where there is only one distinct variable of each type explore :: (PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun, MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m, MonadTerminal m) => Term fun -> StateT (Schemas testcase result fun norm) m (Result fun) explore t0 = do use <- access use if or [use ty == UpTo 0 | ty <- usort (map typ (vars t0))] then return (Rejected []) else do let t = mostSpecific t0 res <- zoom classes (Terms.explore t) case res of Terms.Singleton -> do inst <- gets sc_instantiate_singleton if inst t then instantiateRep t else do -- Add the most general instance of the schema zoom (instance_ t) (Terms.explore (mostGeneral use t0)) return (Accepted []) Terms.Discovered ([] :=>: _ :=: u) -> exploreIn u t Terms.Knew ([] :=>: _ :=: u) -> exploreIn u t _ -> error "term layer returned non-equational property" {-# INLINEABLE exploreIn #-} exploreIn :: (PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun, MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m, MonadTerminal m) => Term fun -> Term fun -> StateT (Schemas testcase result fun norm) m (Result fun) exploreIn rep t = do -- First check if schema is redundant use <- access use res <- zoom (instance_ rep) (Terms.explore (mostGeneral use t)) case res of Terms.Discovered prop -> do add prop return (Rejected [prop]) Terms.Knew _ -> return (Rejected []) Terms.Singleton -> do -- Instantiate rep too if not already done inst <- access instantiated props <- if Set.notMember rep inst then result_props <$> instantiateRep rep else return [] res <- instantiate rep t return res { result_props = props ++ result_props res } {-# INLINEABLE instantiateRep #-} instantiateRep :: (PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun, MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m, MonadTerminal m) => Term fun -> StateT (Schemas testcase result fun norm) m (Result fun) instantiateRep t = do instantiated %= Set.insert t instantiate t t {-# INLINEABLE instantiate #-} instantiate :: (PrettyTerm fun, Ord result, Ord fun, Ord norm, Typed fun, MonadTester testcase (Term fun) m, MonadPruner (Term fun) norm m, MonadTerminal m) => Term fun -> Term fun -> StateT (Schemas testcase result fun norm) m (Result fun) instantiate rep t = do use <- access use zoom (instance_ rep) $ do let instances = sortBy (comparing generality) (allUnifications use (mostGeneral use t)) Accepted <$> catMaybes <$> forM instances (\t -> do res <- Terms.explore t case res of Terms.Discovered prop -> do add prop return (Just prop) _ -> return Nothing) -- sortBy (comparing generality) should give most general instances first. generality :: Term f -> (Int, [Var]) generality t = (-length (usort (vars t)), vars t) mkVar :: Type -> Int -> Var mkVar ty n = V ty m -- Try to make sure that variables of different types don't end up with the -- same number. It would be better to deal with this in QuickSpec.Term. -- (Note: the problem we are trying to avoid is that, if two variables have -- the same number and different but unifiable types, then a type substitution -- can turn them into the same variable.) where m = fromIntegral (labelNum (label (ty, n))) -- | Instantiate a schema by making all the variables different. mostGeneral :: (Type -> VariableUse) -> Term f -> Term f mostGeneral use s = evalState (aux s) Map.empty where aux (Var (V ty _)) = do m <- get let n :: Int n = Map.findWithDefault 0 ty m unless (use ty == UpTo 1) $ put $! Map.insert ty (n+1) m return (Var (mkVar ty n)) aux (Fun f) = return (Fun f) aux (t :$: u) = liftM2 (:$:) (aux t) (aux u) mostSpecific :: Term f -> Term f mostSpecific = subst (\(V ty _) -> Var (mkVar ty 0)) allUnifications :: (Type -> VariableUse) -> Term fun -> [Term fun] allUnifications use t = [ subst (\x -> Var (Map.findWithDefault undefined x s)) t | s <- ss ] where ss = map Map.fromList $ map concat $ sequence [substsFor xs (typ y) | xs@(y:_) <- partitionBy typ (usort (vars t))] substsFor xs ty = case use ty of UpTo k -> sequence [[(x, v) | v <- take k vs] | x <- xs] Linear -> map (zip xs) (permutations (take (length xs) vs)) where vs = map (mkVar ty) [0..]