-- | The main QuickSpec module. Everything you need to run QuickSpec lives here. -- -- To run QuickSpec, you need to tell it which functions to test. We call the -- list of functions the /signature/. Here is an example signature, which tells -- QuickSpec to test the @++@, @reverse@ and @[]@ functions: -- -- @ -- sig = [ -- `con` "++" ((++) :: [`A`] -> [`A`] -> [`A`]), -- `con` "reverse" (reverse :: [`A`] -> [`A`]), -- `con` "[]" ([] :: [`A`]) ] -- @ -- -- The `con` function, used above, adds a function to the signature, given its -- name and its value. When declaring polymorphic functions in the signature, -- we use the types `A` to `E` to represent type variables. -- Having defined this signature, we can say @`quickSpec` sig@ to test it and -- see the discovered equations. -- -- If you want to test functions over your own datatypes, those types need to -- implement `Arbitrary` and `Ord` (if the `Ord` instance is a problem, see `Observe`). -- You must also declare those instances to QuickSpec, by including them in the -- signature. For monomorphic types you can do this using `monoType`: -- -- > data T = ... -- > main = quickSpec [ -- > ..., -- > `monoType` (Proxy :: Proxy T)] -- -- You can only declare monomorphic types with `monoType`. If you want to test -- your own polymorphic types, you must explicitly declare `Arbitrary` and `Ord` -- instances using the `inst` function. -- -- You can also use QuickSpec to find conditional equations. To do so, you need -- to include some /predicates/ in the signature. These are functions returning -- `Bool` which can appear as conditions in other equations. Declaring a predicate -- works just like declaring a function, except that you declare it using -- `predicate` instead of `con`. -- -- You can also put certain options in the signature. The most useful is -- `withMaxTermSize', which you can use to tell QuickSpec to generate larger -- equations. -- -- The @@ -- directory contains many examples. Here are some interesting ones: -- -- * @@: a simple arithmetic example. Demonstrates basic use of QuickSpec. -- * @@: list functions. Demonstrates testing polymorphic functions. -- * @@: sorting. Demonstrates finding conditional equations. -- * @@: a few functions from "Data.IntSet". Demonstrates testing user-defined datatypes and finding conditional equations. -- * @@: pretty printing combinators. Demonstrates testing user-defined datatypes and using observational equality. -- * @@: parser combinators. Demonstrates testing polymorphic datatypes and using observational equality. -- -- You can also find some larger case studies in our paper, -- . {-# LANGUAGE ScopedTypeVariables, FlexibleContexts, TypeOperators, MultiParamTypeClasses, FunctionalDependencies #-} module QuickSpec( -- * Running QuickSpec quickSpec, Sig, Signature(..), -- * Declaring functions and predicates con, predicate, -- ** Type variables for polymorphic functions A, B, C, D, E, -- * Declaring types monoType, vars, monoTypeWithVars, inst, Observe(..), -- * Exploring functions in series background, series, -- * Customising QuickSpec withMaxTermSize, withMaxTests, withMaxTestSize, defaultTo, withPruningDepth, withPruningTermSize, withFixedSeed, -- * Re-exported functionality Typeable, (:-)(..), Dict(..), Proxy(..), Arbitrary) where import QuickSpec.Haskell(Predicateable, TestCase, Names(..), Observe(..)) import qualified QuickSpec.Haskell as Haskell import qualified QuickSpec.Haskell.Resolve as Haskell import qualified QuickSpec.Testing.QuickCheck as QuickCheck import qualified QuickSpec.Pruning.UntypedTwee as Twee import Test.QuickCheck import Test.QuickCheck.Random import Data.Constraint import Data.Lens.Light import QuickSpec.Utils import QuickSpec.Type hiding (defaultTo) import Data.Proxy -- | Run QuickSpec. See the documentation at the top of this file. quickSpec :: Signature sig => sig -> IO () quickSpec signature = Haskell.quickSpec (sig 0 Haskell.defaultConfig) where Sig sig = toSig signature -- | A signature. newtype Sig = Sig (Int -> Haskell.Config -> Haskell.Config) instance Monoid Sig where mempty = Sig (\_ -> id) Sig sig1 `mappend` Sig sig2 = Sig (\n -> sig2 n . sig1 n) -- | A class of things that can be used as a QuickSpec signature. class Signature sig where -- | Convert the thing to a signature. toSig :: sig -> Sig instance Signature Sig where toSig = id instance Signature sig => Signature [sig] where toSig = mconcat . map toSig -- | Declare a constant with a given name and value. -- If the constant you want to use is polymorphic, you can use the types -- `A`, `B`, `C`, `D`, `E` to monomorphise it, for example: -- -- > constant "reverse" (reverse :: [A] -> [A]) -- -- QuickSpec will then understand that the constant is really polymorphic. con :: Typeable a => String -> a -> Sig con name x = Sig (\n -> modL Haskell.lens_constants (appendAt n (Haskell.con name x))) -- | Declare a predicate with a given name and value. -- The predicate should be a function which returns `Bool`. -- It will appear in equations just like any other constant, -- but will also be allowed to appear as a condition. -- -- For example: -- -- @ -- sig = [ -- `con` "delete" (`Data.List.delete` :: Int -> [Int] -> [Int]), -- `con` "insert" (`Data.List.insert` :: Int -> [Int] -> [Int]), -- predicate "member" (member :: Int -> [Int] -> Bool) ] -- @ predicate :: ( Predicateable a , Typeable a , Typeable (TestCase a)) => String -> a -> Sig predicate name x = Sig (\n -> modL Haskell.lens_predicates (appendAt n (Haskell.predicate name x))) appendAt :: Int -> a -> [[a]] -> [[a]] appendAt n x [] = appendAt n x [[]] appendAt 0 x (xs:xss) = (xs ++ [x]):xss appendAt n x (xs:xss) = xs:appendAt (n-1) x xss -- | Declare a new monomorphic type. -- The type must implement `Ord` and `Arbitrary`. monoType :: forall proxy a. (Ord a, Arbitrary a, Typeable a) => proxy a -> Sig monoType _ = mconcat [ inst (Sub Dict :: () :- Ord a), inst (Sub Dict :: () :- Arbitrary a)] -- | Declare a new monomorphic type, saying how you want variables of that type to be named. monoTypeWithVars :: forall proxy a. (Ord a, Arbitrary a, Typeable a) => [String] -> proxy a -> Sig monoTypeWithVars xs proxy = monoType proxy `mappend` vars xs proxy -- | Customize how variables of a particular type are named. vars :: forall proxy a. Typeable a => [String] -> proxy a -> Sig vars xs _ = instFun (Names xs :: Names a) -- | Declare a typeclass instance. QuickSpec needs to have an `Ord` and -- `Arbitrary` instance for each type you want it to test. -- -- For example, if you are testing @`Data.Map.Map` k v@, you will need to add -- the following two declarations to your signature: -- -- @ -- `inst` (`Sub` `Dict` :: (Ord A, Ord B) `:-` Ord (Map A B)) -- `inst` (`Sub` `Dict` :: (Arbitrary A, Arbitrary B) `:-` Arbitrary (Map A B)) -- @ inst :: (Typeable c1, Typeable c2) => c1 :- c2 -> Sig inst = instFun instFun :: Typeable a => a -> Sig instFun x = Sig (\_ -> modL Haskell.lens_instances (`mappend` Haskell.inst x)) -- | Declare some functions as being background functions. -- These are functions which are not interesting on their own, -- but which may appear in interesting laws with non-background functions. -- Declaring background functions may improve the laws you get out. -- -- Here is an example, which tests @++@ and @length@, giving @0@ and @+@ as -- background functions: -- -- > main = quickSpec [ -- > con "++" ((++) :: [A] -> [A] -> [A]), -- > con "length" (length :: [A] -> Int), -- > -- > background [ -- > con "0" (0 :: Int), -- > con "+" ((+) :: Int -> Int -> Int) ] ] background :: Signature sig => sig -> Sig background signature = Sig (\n -> sig (n+1)) where Sig sig = toSig signature -- | Run QuickCheck on a series of signatures. Tests the functions in the first -- signature, then adds the functions in the second signature, then adds the -- functions in the third signature, and so on. -- -- This can be useful when you have a core API you want to test first, and a -- larger API you want to test later. The laws for the core API will be printed -- separately from the laws for the larger API. -- -- Here is an example which first tests @0@ and @+@ and then adds @++@ and @length@: -- -- > main = quickSpec [sig1, sig2] -- > where -- > sig1 = [ -- > con "0" (0 :: Int), -- > con "+" ((+) :: Int -> Int -> Int) ] -- > sig2 = [ -- > con "++" ((++) :: [A] -> [A] -> [A]), -- > con "length" (length :: [A] -> Int) ] series :: Signature sig => [sig] -> Sig series = foldl op mempty . map toSig where op sigs sig = toSig [background sigs, sig] -- | Set the maximum size of terms to explore (default: 7). withMaxTermSize :: Int -> Sig withMaxTermSize n = Sig (\_ -> setL Haskell.lens_max_size n) -- | Set how many times to test each discovered law (default: 1000). withMaxTests :: Int -> Sig withMaxTests n = Sig (\_ -> setL (QuickCheck.lens_num_tests # Haskell.lens_quickCheck) n) -- | Set the maximum value for QuickCheck's size parameter when generating test -- data (default: 20). withMaxTestSize :: Int -> Sig withMaxTestSize n = Sig (\_ -> setL (QuickCheck.lens_max_test_size # Haskell.lens_quickCheck) n) -- | Set which type polymorphic terms are tested at. defaultTo :: Typeable a => proxy a -> Sig defaultTo proxy = Sig (\_ -> setL Haskell.lens_default_to (typeRep proxy)) -- | Set how hard QuickSpec tries to filter out redundant equations (default: no limit). -- -- If you experience long pauses when running QuickSpec, try setting this number -- to 2 or 3. withPruningDepth :: Int -> Sig withPruningDepth n = Sig (\_ -> setL (Twee.lens_max_cp_depth # Haskell.lens_twee) n) -- | Set the maximum term size QuickSpec will reason about when it filters out -- redundant equations (default: same as maximum term size). -- -- If you get laws you believe are redundant, try increasing this number to 1 or -- 2 more than the maximum term size. withPruningTermSize :: Int -> Sig withPruningTermSize n = Sig (\_ -> setL (Twee.lens_max_term_size # Haskell.lens_twee) n) -- | Set the random number seed used for test case generation. -- Useful if you want repeatable results. withFixedSeed :: Int -> Sig withFixedSeed s = Sig (\_ -> setL (QuickCheck.lens_fixed_seed # Haskell.lens_quickCheck) (Just . mkQCGen $ s))