{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE GHCForeignImportPrim #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE UnboxedTuples #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE UnliftedFFITypes #-} #if __GLASGOW_HASKELL__ >= 800 {-# LANGUAGE TypeFamilyDependencies #-} #else {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE KindSignatures #-} #endif {-# OPTIONS_HADDOCK hide, not-home #-} -- | -- Module : System.Random.Internal -- Copyright : (c) The University of Glasgow 2001 -- License : BSD-style (see the file LICENSE in the 'random' repository) -- Maintainer : libraries@haskell.org -- Stability : stable -- -- This library deals with the common task of pseudo-random number generation. module System.Random.Internal (-- * Pure and monadic pseudo-random number generator interfaces RandomGen(..) , StatefulGen(..) , FrozenGen(..) -- ** Standard pseudo-random number generator , StdGen(..) , mkStdGen -- * Monadic adapters for pure pseudo-random number generators -- ** Pure adapter , StateGen(..) , StateGenM(..) , splitGen , runStateGen , runStateGen_ , runStateGenT , runStateGenT_ , runStateGenST -- * Pseudo-random values of various types , Uniform(..) , UniformRange(..) , uniformByteStringM , uniformDouble01M , uniformDoublePositive01M , uniformFloat01M , uniformFloatPositive01M -- * Generators for sequences of pseudo-random bytes , genShortByteStringIO , genShortByteStringST ) where import Control.Arrow import Control.DeepSeq (NFData) import Control.Monad.IO.Class import Control.Monad.ST import Control.Monad.ST.Unsafe import Control.Monad.State.Strict import Data.Bits import Data.ByteString.Builder.Prim (word64LE) import Data.ByteString.Builder.Prim.Internal (runF) import Data.ByteString.Short.Internal (ShortByteString(SBS), fromShort) import Data.Int import Data.Word import Foreign.C.Types import Foreign.Ptr (plusPtr) import Foreign.Storable (Storable(pokeByteOff)) import GHC.Exts import GHC.IO (IO(..)) import GHC.Word import Numeric.Natural (Natural) import System.IO.Unsafe (unsafePerformIO) import qualified System.Random.SplitMix as SM import qualified System.Random.SplitMix32 as SM32 #if __GLASGOW_HASKELL__ >= 800 import Data.Kind #endif #if __GLASGOW_HASKELL__ >= 802 import Data.ByteString.Internal (ByteString(PS)) import GHC.ForeignPtr #else import Data.ByteString (ByteString) #endif -- | 'RandomGen' is an interface to pure pseudo-random number generators. -- -- 'StdGen' is the standard 'RandomGen' instance provided by this library. {-# DEPRECATED next "No longer used" #-} {-# DEPRECATED genRange "No longer used" #-} class RandomGen g where {-# MINIMAL split,(genWord32|genWord64|(next,genRange)) #-} -- | Returns an 'Int' that is uniformly distributed over the range returned by -- 'genRange' (including both end points), and a new generator. Using 'next' -- is inefficient as all operations go via 'Integer'. See -- [here](https://alexey.kuleshevi.ch/blog/2019/12/21/random-benchmarks) for -- more details. It is thus deprecated. next :: g -> (Int, g) next g = runStateGen g (uniformRM (genRange g)) -- | Returns a 'Word8' that is uniformly distributed over the entire 'Word8' -- range. -- -- @since 1.2.0 genWord8 :: g -> (Word8, g) genWord8 = first fromIntegral . genWord32 -- | Returns a 'Word16' that is uniformly distributed over the entire 'Word16' -- range. -- -- @since 1.2.0 genWord16 :: g -> (Word16, g) genWord16 = first fromIntegral . genWord32 -- | Returns a 'Word32' that is uniformly distributed over the entire 'Word32' -- range. -- -- @since 1.2.0 genWord32 :: g -> (Word32, g) genWord32 = randomIvalIntegral (minBound, maxBound) -- Once `next` is removed, this implementation should be used instead: -- first fromIntegral . genWord64 -- | Returns a 'Word64' that is uniformly distributed over the entire 'Word64' -- range. -- -- @since 1.2.0 genWord64 :: g -> (Word64, g) genWord64 g = case genWord32 g of (l32, g') -> case genWord32 g' of (h32, g'') -> ((fromIntegral h32 `shiftL` 32) .|. fromIntegral l32, g'') -- | @genWord32R upperBound g@ returns a 'Word32' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 genWord32R :: Word32 -> g -> (Word32, g) genWord32R m g = runStateGen g (unbiasedWordMult32 m) -- | @genWord64R upperBound g@ returns a 'Word64' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 genWord64R :: Word64 -> g -> (Word64, g) genWord64R m g = runStateGen g (unsignedBitmaskWithRejectionM uniformWord64 m) -- | @genShortByteString n g@ returns a 'ShortByteString' of length @n@ -- filled with pseudo-random bytes. -- -- @since 1.2.0 genShortByteString :: Int -> g -> (ShortByteString, g) genShortByteString n g = unsafePerformIO $ runStateGenT g (genShortByteStringIO n . uniformWord64) {-# INLINE genShortByteString #-} -- | Yields the range of values returned by 'next'. -- -- It is required that: -- -- * If @(a, b) = 'genRange' g@, then @a < b@. -- * 'genRange' must not examine its argument so the value it returns is -- determined only by the instance of 'RandomGen'. -- -- The default definition spans the full range of 'Int'. genRange :: g -> (Int, Int) genRange _ = (minBound, maxBound) -- | Returns two distinct pseudo-random number generators. -- -- Implementations should take care to ensure that the resulting generators -- are not correlated. Some pseudo-random number generators are not -- splittable. In that case, the 'split' implementation should fail with a -- descriptive 'error' message. split :: g -> (g, g) -- | 'StatefulGen' is an interface to monadic pseudo-random number generators. class Monad m => StatefulGen g m where {-# MINIMAL (uniformWord32|uniformWord64) #-} -- | @uniformWord32R upperBound g@ generates a 'Word32' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 uniformWord32R :: Word32 -> g -> m Word32 uniformWord32R = unsignedBitmaskWithRejectionM uniformWord32 -- | @uniformWord64R upperBound g@ generates a 'Word64' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 uniformWord64R :: Word64 -> g -> m Word64 uniformWord64R = unsignedBitmaskWithRejectionM uniformWord64 -- | Generates a 'Word8' that is uniformly distributed over the entire 'Word8' -- range. -- -- The default implementation extracts a 'Word8' from 'uniformWord32'. -- -- @since 1.2.0 uniformWord8 :: g -> m Word8 uniformWord8 = fmap fromIntegral . uniformWord32 -- | Generates a 'Word16' that is uniformly distributed over the entire -- 'Word16' range. -- -- The default implementation extracts a 'Word16' from 'uniformWord32'. -- -- @since 1.2.0 uniformWord16 :: g -> m Word16 uniformWord16 = fmap fromIntegral . uniformWord32 -- | Generates a 'Word32' that is uniformly distributed over the entire -- 'Word32' range. -- -- The default implementation extracts a 'Word32' from 'uniformWord64'. -- -- @since 1.2.0 uniformWord32 :: g -> m Word32 uniformWord32 = fmap fromIntegral . uniformWord64 -- | Generates a 'Word64' that is uniformly distributed over the entire -- 'Word64' range. -- -- The default implementation combines two 'Word32' from 'uniformWord32' into -- one 'Word64'. -- -- @since 1.2.0 uniformWord64 :: g -> m Word64 uniformWord64 g = do l32 <- uniformWord32 g h32 <- uniformWord32 g pure (shiftL (fromIntegral h32) 32 .|. fromIntegral l32) -- | @uniformShortByteString n g@ generates a 'ShortByteString' of length @n@ -- filled with pseudo-random bytes. -- -- @since 1.2.0 uniformShortByteString :: Int -> g -> m ShortByteString default uniformShortByteString :: MonadIO m => Int -> g -> m ShortByteString uniformShortByteString n = genShortByteStringIO n . uniformWord64 {-# INLINE uniformShortByteString #-} -- | This class is designed for stateful pseudo-random number generators that -- can be saved as and restored from an immutable data type. -- -- @since 1.2.0 class StatefulGen (MutableGen f m) m => FrozenGen f m where -- | Represents the state of the pseudo-random number generator for use with -- 'thawGen' and 'freezeGen'. -- -- @since 1.2.0 #if __GLASGOW_HASKELL__ >= 800 type MutableGen f m = (g :: Type) | g -> f #else type MutableGen f m :: * #endif -- | Saves the state of the pseudo-random number generator as a frozen seed. -- -- @since 1.2.0 freezeGen :: MutableGen f m -> m f -- | Restores the pseudo-random number generator from its frozen seed. -- -- @since 1.2.0 thawGen :: f -> m (MutableGen f m) data MBA s = MBA (MutableByteArray# s) -- | Efficiently generates a sequence of pseudo-random bytes in a platform -- independent manner. -- -- @since 1.2.0 genShortByteStringIO :: MonadIO m => Int -- ^ Number of bytes to generate -> m Word64 -- ^ IO action that can generate 8 random bytes at a time -> m ShortByteString genShortByteStringIO n0 gen64 = do let !n@(I# n#) = max 0 n0 !n64 = n `quot` 8 !nrem64 = n `rem` 8 MBA mba# <- liftIO $ IO $ \s# -> case newPinnedByteArray# n# s# of (# s'#, mba# #) -> (# s'#, MBA mba# #) let go i ptr | i < n64 = do w64 <- gen64 -- Writing 8 bytes at a time in a Little-endian order gives us -- platform portability liftIO $ runF word64LE w64 ptr go (i + 1) (ptr `plusPtr` 8) | otherwise = return ptr ptr <- go 0 (Ptr (byteArrayContents# (unsafeCoerce# mba#))) when (nrem64 > 0) $ do w64 <- gen64 -- In order to not mess up the byte order we write generated Word64 into a -- temporary pointer and then copy only the missing bytes over to the array. -- It is tempting to simply generate as many bytes as we still need using -- smaller generators (eg. uniformWord8), but that would result in -- inconsistent tail when total length is slightly varied. liftIO $ do let goRem64 z i = when (i < nrem64) $ do pokeByteOff ptr i (fromIntegral z :: Word8) goRem64 (z `shiftR` 8) (i + 1) goRem64 w64 0 liftIO $ IO $ \s# -> case unsafeFreezeByteArray# mba# s# of (# s'#, ba# #) -> (# s'#, SBS ba# #) {-# INLINE genShortByteStringIO #-} -- | Same as 'genShortByteStringIO', but runs in 'ST'. -- -- @since 1.2.0 genShortByteStringST :: Int -> ST s Word64 -> ST s ShortByteString genShortByteStringST n action = unsafeIOToST (genShortByteStringIO n (unsafeSTToIO action)) -- | Generates a pseudo-random 'ByteString' of the specified size. -- -- @since 1.2.0 {-# INLINE uniformByteStringM #-} uniformByteStringM :: StatefulGen g m => Int -> g -> m ByteString uniformByteStringM n g = do ba <- uniformShortByteString n g pure $ #if __GLASGOW_HASKELL__ < 802 fromShort ba #else let !(SBS ba#) = ba in if isTrue# (isByteArrayPinned# ba#) then pinnedByteArrayToByteString ba# else fromShort ba pinnedByteArrayToByteString :: ByteArray# -> ByteString pinnedByteArrayToByteString ba# = PS (pinnedByteArrayToForeignPtr ba#) 0 (I# (sizeofByteArray# ba#)) {-# INLINE pinnedByteArrayToByteString #-} pinnedByteArrayToForeignPtr :: ByteArray# -> ForeignPtr a pinnedByteArrayToForeignPtr ba# = ForeignPtr (byteArrayContents# ba#) (PlainPtr (unsafeCoerce# ba#)) {-# INLINE pinnedByteArrayToForeignPtr #-} #endif -- | Opaque data type that carries the type of a pure pseudo-random number -- generator. -- -- @since 1.2.0 data StateGenM g = StateGenM -- | Wrapper for pure state gen, which acts as an immutable seed for the corresponding -- stateful generator `StateGenM` -- -- @since 1.2.0 newtype StateGen g = StateGen { unStateGen :: g } deriving (Eq, Ord, Show, RandomGen, Storable, NFData) instance (RandomGen g, MonadState g m) => StatefulGen (StateGenM g) m where uniformWord32R r _ = state (genWord32R r) uniformWord64R r _ = state (genWord64R r) uniformWord8 _ = state genWord8 uniformWord16 _ = state genWord16 uniformWord32 _ = state genWord32 uniformWord64 _ = state genWord64 uniformShortByteString n _ = state (genShortByteString n) instance (RandomGen g, MonadState g m) => FrozenGen (StateGen g) m where type MutableGen (StateGen g) m = StateGenM g freezeGen _ = fmap StateGen get thawGen (StateGen g) = StateGenM <$ put g -- | Splits a pseudo-random number generator into two. Updates the state with -- one of the resulting generators and returns the other. -- -- @since 1.2.0 splitGen :: (MonadState g m, RandomGen g) => m g splitGen = state split -- | Runs a monadic generating action in the `State` monad using a pure -- pseudo-random number generator. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGen pureGen randomM :: (Int, StdGen) -- (7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627}) -- -- @since 1.2.0 runStateGen :: RandomGen g => g -> (StateGenM g -> State g a) -> (a, g) runStateGen g f = runState (f StateGenM) g -- | Runs a monadic generating action in the `State` monad using a pure -- pseudo-random number generator. Returns only the resulting pseudo-random -- value. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGen_ pureGen randomM :: Int -- 7879794327570578227 -- -- @since 1.2.0 runStateGen_ :: RandomGen g => g -> (StateGenM g -> State g a) -> a runStateGen_ g = fst . runStateGen g -- | Runs a monadic generating action in the `StateT` monad using a pure -- pseudo-random number generator. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGenT pureGen randomM :: IO (Int, StdGen) -- (7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627}) -- -- @since 1.2.0 runStateGenT :: RandomGen g => g -> (StateGenM g -> StateT g m a) -> m (a, g) runStateGenT g f = runStateT (f StateGenM) g -- | Runs a monadic generating action in the `StateT` monad using a pure -- pseudo-random number generator. Returns only the resulting pseudo-random -- value. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGenT_ pureGen randomM :: IO Int -- 7879794327570578227 -- -- @since 1.2.0 runStateGenT_ :: (RandomGen g, Functor f) => g -> (StateGenM g -> StateT g f a) -> f a runStateGenT_ g = fmap fst . runStateGenT g -- | Runs a monadic generating action in the `ST` monad using a pure -- pseudo-random number generator. -- -- @since 1.2.0 runStateGenST :: RandomGen g => g -> (forall s . StateGenM g -> StateT g (ST s) a) -> (a, g) runStateGenST g action = runST $ runStateGenT g action {-# INLINE runStateGenST #-} -- | The standard pseudo-random number generator. newtype StdGen = StdGen { unStdGen :: SM.SMGen } deriving (Show, RandomGen, NFData) instance Eq StdGen where StdGen x1 == StdGen x2 = SM.unseedSMGen x1 == SM.unseedSMGen x2 instance RandomGen SM.SMGen where next = SM.nextInt genWord32 = SM.nextWord32 genWord64 = SM.nextWord64 split = SM.splitSMGen instance RandomGen SM32.SMGen where next = SM32.nextInt genWord32 = SM32.nextWord32 genWord64 = SM32.nextWord64 split = SM32.splitSMGen -- | Constructs a 'StdGen' deterministically. mkStdGen :: Int -> StdGen mkStdGen = StdGen . SM.mkSMGen . fromIntegral -- | The class of types for which a uniformly distributed value can be drawn -- from all possible values of the type. -- -- @since 1.2.0 class Uniform a where -- | Generates a value uniformly distributed over all possible values of that -- type. -- -- @since 1.2.0 uniformM :: StatefulGen g m => g -> m a -- | The class of types for which a uniformly distributed value can be drawn -- from a range. -- -- @since 1.2.0 class UniformRange a where -- | Generates a value uniformly distributed over the provided range, which -- is interpreted as inclusive in the lower and upper bound. -- -- * @uniformRM (1 :: Int, 4 :: Int)@ generates values uniformly from the -- set \(\{1,2,3,4\}\) -- -- * @uniformRM (1 :: Float, 4 :: Float)@ generates values uniformly from -- the set \(\{x\;|\;1 \le x \le 4\}\) -- -- The following law should hold to make the function always defined: -- -- > uniformRM (a, b) = uniformRM (b, a) -- -- @since 1.2.0 uniformRM :: StatefulGen g m => (a, a) -> g -> m a instance UniformRange Integer where uniformRM = uniformIntegralM instance UniformRange Natural where uniformRM = uniformIntegralM instance Uniform Int8 where uniformM = fmap (fromIntegral :: Word8 -> Int8) . uniformWord8 instance UniformRange Int8 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int8 -> Word8) fromIntegral instance Uniform Int16 where uniformM = fmap (fromIntegral :: Word16 -> Int16) . uniformWord16 instance UniformRange Int16 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int16 -> Word16) fromIntegral {-# INLINE uniformRM #-} instance Uniform Int32 where uniformM = fmap (fromIntegral :: Word32 -> Int32) . uniformWord32 instance UniformRange Int32 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int32 -> Word32) fromIntegral {-# INLINE uniformRM #-} instance Uniform Int64 where uniformM = fmap (fromIntegral :: Word64 -> Int64) . uniformWord64 instance UniformRange Int64 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int64 -> Word64) fromIntegral {-# INLINE uniformRM #-} wordSizeInBits :: Int wordSizeInBits = finiteBitSize (0 :: Word) instance Uniform Int where uniformM | wordSizeInBits == 64 = fmap (fromIntegral :: Word64 -> Int) . uniformWord64 | otherwise = fmap (fromIntegral :: Word32 -> Int) . uniformWord32 instance UniformRange Int where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int -> Word) fromIntegral {-# INLINE uniformRM #-} instance Uniform Word where uniformM | wordSizeInBits == 64 = fmap (fromIntegral :: Word64 -> Word) . uniformWord64 | otherwise = fmap (fromIntegral :: Word32 -> Word) . uniformWord32 instance UniformRange Word where {-# INLINE uniformRM #-} uniformRM = unsignedBitmaskWithRejectionRM instance Uniform Word8 where {-# INLINE uniformM #-} uniformM = uniformWord8 instance UniformRange Word8 where {-# INLINE uniformRM #-} uniformRM = unbiasedWordMult32RM instance Uniform Word16 where {-# INLINE uniformM #-} uniformM = uniformWord16 instance UniformRange Word16 where {-# INLINE uniformRM #-} uniformRM = unbiasedWordMult32RM instance Uniform Word32 where {-# INLINE uniformM #-} uniformM = uniformWord32 instance UniformRange Word32 where {-# INLINE uniformRM #-} uniformRM = unbiasedWordMult32RM instance Uniform Word64 where {-# INLINE uniformM #-} uniformM = uniformWord64 instance UniformRange Word64 where {-# INLINE uniformRM #-} uniformRM = unsignedBitmaskWithRejectionRM #if __GLASGOW_HASKELL__ >= 802 instance Uniform CBool where uniformM = fmap CBool . uniformM instance UniformRange CBool where uniformRM (CBool b, CBool t) = fmap CBool . uniformRM (b, t) {-# INLINE uniformRM #-} #endif instance Uniform CChar where uniformM = fmap CChar . uniformM instance UniformRange CChar where uniformRM (CChar b, CChar t) = fmap CChar . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CSChar where uniformM = fmap CSChar . uniformM instance UniformRange CSChar where uniformRM (CSChar b, CSChar t) = fmap CSChar . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CUChar where uniformM = fmap CUChar . uniformM instance UniformRange CUChar where uniformRM (CUChar b, CUChar t) = fmap CUChar . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CShort where uniformM = fmap CShort . uniformM instance UniformRange CShort where uniformRM (CShort b, CShort t) = fmap CShort . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CUShort where uniformM = fmap CUShort . uniformM instance UniformRange CUShort where uniformRM (CUShort b, CUShort t) = fmap CUShort . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CInt where uniformM = fmap CInt . uniformM instance UniformRange CInt where uniformRM (CInt b, CInt t) = fmap CInt . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CUInt where uniformM = fmap CUInt . uniformM instance UniformRange CUInt where uniformRM (CUInt b, CUInt t) = fmap CUInt . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CLong where uniformM = fmap CLong . uniformM instance UniformRange CLong where uniformRM (CLong b, CLong t) = fmap CLong . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CULong where uniformM = fmap CULong . uniformM instance UniformRange CULong where uniformRM (CULong b, CULong t) = fmap CULong . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CPtrdiff where uniformM = fmap CPtrdiff . uniformM instance UniformRange CPtrdiff where uniformRM (CPtrdiff b, CPtrdiff t) = fmap CPtrdiff . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CSize where uniformM = fmap CSize . uniformM instance UniformRange CSize where uniformRM (CSize b, CSize t) = fmap CSize . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CWchar where uniformM = fmap CWchar . uniformM instance UniformRange CWchar where uniformRM (CWchar b, CWchar t) = fmap CWchar . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CSigAtomic where uniformM = fmap CSigAtomic . uniformM instance UniformRange CSigAtomic where uniformRM (CSigAtomic b, CSigAtomic t) = fmap CSigAtomic . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CLLong where uniformM = fmap CLLong . uniformM instance UniformRange CLLong where uniformRM (CLLong b, CLLong t) = fmap CLLong . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CULLong where uniformM = fmap CULLong . uniformM instance UniformRange CULLong where uniformRM (CULLong b, CULLong t) = fmap CULLong . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CIntPtr where uniformM = fmap CIntPtr . uniformM instance UniformRange CIntPtr where uniformRM (CIntPtr b, CIntPtr t) = fmap CIntPtr . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CUIntPtr where uniformM = fmap CUIntPtr . uniformM instance UniformRange CUIntPtr where uniformRM (CUIntPtr b, CUIntPtr t) = fmap CUIntPtr . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CIntMax where uniformM = fmap CIntMax . uniformM instance UniformRange CIntMax where uniformRM (CIntMax b, CIntMax t) = fmap CIntMax . uniformRM (b, t) {-# INLINE uniformRM #-} instance Uniform CUIntMax where uniformM = fmap CUIntMax . uniformM instance UniformRange CUIntMax where uniformRM (CUIntMax b, CUIntMax t) = fmap CUIntMax . uniformRM (b, t) {-# INLINE uniformRM #-} -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange CFloat where uniformRM (CFloat l, CFloat h) = fmap CFloat . uniformRM (l, h) {-# INLINE uniformRM #-} -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange CDouble where uniformRM (CDouble l, CDouble h) = fmap CDouble . uniformRM (l, h) {-# INLINE uniformRM #-} -- The `chr#` and `ord#` are the prim functions that will be called, regardless of which -- way you gonna do the `Char` conversion, so it is better to call them directly and -- bypass all the hoops. Also because `intToChar` and `charToInt` are internal functions -- and are called on valid character ranges it is impossible to generate an invalid -- `Char`, therefore it is totally fine to omit all the unnecessary checks involved in -- other paths of conversion. word32ToChar :: Word32 -> Char word32ToChar (W32# w#) = C# (chr# (word2Int# w#)) {-# INLINE word32ToChar #-} charToWord32 :: Char -> Word32 charToWord32 (C# c#) = W32# (int2Word# (ord# c#)) {-# INLINE charToWord32 #-} instance Uniform Char where uniformM g = word32ToChar <$> unbiasedWordMult32 (charToWord32 maxBound) g {-# INLINE uniformM #-} instance UniformRange Char where uniformRM (l, h) g = word32ToChar <$> unbiasedWordMult32RM (charToWord32 l, charToWord32 h) g {-# INLINE uniformRM #-} instance Uniform Bool where uniformM = fmap wordToBool . uniformWord8 where wordToBool w = (w .&. 1) /= 0 instance UniformRange Bool where uniformRM (False, False) _g = return False uniformRM (True, True) _g = return True uniformRM _ g = uniformM g -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange Double where uniformRM (l, h) g | l == h = return l | otherwise = do x <- uniformDouble01M g return $ x * l + (1 -x) * h -- | Generates uniformly distributed 'Double' in the range \([0, 1]\). -- Numbers are generated by generating uniform 'Word64' and dividing -- it by \(2^{64}\). It's used to implement 'UniformR' instance for -- 'Double'. -- -- @since 1.2.0 uniformDouble01M :: StatefulGen g m => g -> m Double uniformDouble01M g = do w64 <- uniformWord64 g return $ fromIntegral w64 / m where m = fromIntegral (maxBound :: Word64) :: Double -- | Generates uniformly distributed 'Double' in the range -- \((0, 1]\). Number is generated as \(2^{-64}/2+\operatorname{uniformDouble01M}\). -- Constant is 1\/2 of smallest nonzero value which could be generated -- by 'uniformDouble01M'. -- -- @since 1.2.0 uniformDoublePositive01M :: StatefulGen g m => g -> m Double uniformDoublePositive01M g = (+ d) <$> uniformDouble01M g where -- We add small constant to shift generated value from zero. It's -- selected as 1/2 of smallest possible nonzero value d = 2.710505431213761e-20 -- 2**(-65) -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange Float where uniformRM (l, h) g | l == h = return l | otherwise = do x <- uniformFloat01M g return $ x * l + (1 - x) * h -- | Generates uniformly distributed 'Float' in the range \([0, 1]\). -- Numbers are generated by generating uniform 'Word32' and dividing -- it by \(2^{32}\). It's used to implement 'UniformR' instance for 'Float' -- -- @since 1.2.0 uniformFloat01M :: StatefulGen g m => g -> m Float uniformFloat01M g = do w32 <- uniformWord32 g return $ fromIntegral w32 / m where m = fromIntegral (maxBound :: Word32) :: Float -- | Generates uniformly distributed 'Float' in the range -- \((0, 1]\). Number is generated as \(2^{-32}/2+\operatorname{uniformFloat01M}\). -- Constant is 1\/2 of smallest nonzero value which could be generated -- by 'uniformFloat01M'. -- -- @since 1.2.0 uniformFloatPositive01M :: StatefulGen g m => g -> m Float uniformFloatPositive01M g = (+ d) <$> uniformFloat01M g where -- See uniformDoublePositive01M d = 1.1641532182693481e-10 -- 2**(-33) -- The two integer functions below take an [inclusive,inclusive] range. randomIvalIntegral :: (RandomGen g, Integral a) => (a, a) -> g -> (a, g) randomIvalIntegral (l,h) = randomIvalInteger (toInteger l, toInteger h) {-# SPECIALIZE randomIvalInteger :: (Num a) => (Integer, Integer) -> StdGen -> (a, StdGen) #-} randomIvalInteger :: (RandomGen g, Num a) => (Integer, Integer) -> g -> (a, g) randomIvalInteger (l,h) rng | l > h = randomIvalInteger (h,l) rng | otherwise = case f 1 0 rng of (v, rng') -> (fromInteger (l + v `mod` k), rng') where (genlo, genhi) = genRange rng b = fromIntegral genhi - fromIntegral genlo + 1 :: Integer -- Probabilities of the most likely and least likely result -- will differ at most by a factor of (1 +- 1/q). Assuming the RandomGen -- is uniform, of course -- On average, log q / log b more pseudo-random values will be generated -- than the minimum q = 1000 :: Integer k = h - l + 1 magtgt = k * q -- generate pseudo-random values until we exceed the target magnitude f mag v g | mag >= magtgt = (v, g) | otherwise = v' `seq`f (mag*b) v' g' where (x,g') = next g v' = v * b + (fromIntegral x - fromIntegral genlo) -- | Generate an integral in the range @[l, h]@ if @l <= h@ and @[h, l]@ -- otherwise. uniformIntegralM :: (Bits a, Integral a, StatefulGen g m) => (a, a) -> g -> m a uniformIntegralM (l, h) gen = case l `compare` h of LT -> do let limit = h - l bounded <- case toIntegralSized limit :: Maybe Word64 of Just limitAsWord64 -> -- Optimisation: if 'limit' fits into 'Word64', generate a bounded -- 'Word64' and then convert to 'Integer' fromIntegral <$> unsignedBitmaskWithRejectionM uniformWord64 limitAsWord64 gen Nothing -> boundedExclusiveIntegralM (limit + 1) gen return $ l + bounded GT -> uniformIntegralM (h, l) gen EQ -> pure l {-# INLINEABLE uniformIntegralM #-} -- | Generate an integral in the range @[0, s)@ using a variant of Lemire's -- multiplication method. -- -- Daniel Lemire. 2019. Fast Random Integer Generation in an Interval. In ACM -- Transactions on Modeling and Computer Simulation -- https://doi.org/10.1145/3230636 -- -- PRECONDITION (unchecked): s > 0 boundedExclusiveIntegralM :: forall a g m . (Bits a, Integral a, StatefulGen g m) => a -> g -> m a boundedExclusiveIntegralM s gen = go where n = integralWordSize s -- We renamed 'L' from the paper to 'k' here because 'L' is not a valid -- variable name in Haskell and 'l' is already used in the algorithm. k = wordSizeInBits * n twoToK = (1 :: a) `shiftL` k modTwoToKMask = twoToK - 1 t = (twoToK - s) `rem` s -- `rem`, instead of `mod` because `twoToK >= s` is guaranteed go :: (Bits a, Integral a, StatefulGen g m) => m a go = do x <- uniformIntegralWords n gen let m = x * s -- m .&. modTwoToKMask == m `mod` twoToK let l = m .&. modTwoToKMask if l < t then go -- m `shiftR` k == m `quot` twoToK else return $ m `shiftR` k {-# INLINE boundedExclusiveIntegralM #-} -- | @integralWordSize i@ returns that least @w@ such that -- @i <= WORD_SIZE_IN_BITS^w@. integralWordSize :: (Bits a, Num a) => a -> Int integralWordSize = go 0 where go !acc i | i == 0 = acc | otherwise = go (acc + 1) (i `shiftR` wordSizeInBits) {-# INLINE integralWordSize #-} -- | @uniformIntegralWords n@ is a uniformly pseudo-random integral in the range -- @[0, WORD_SIZE_IN_BITS^n)@. uniformIntegralWords :: (Bits a, Integral a, StatefulGen g m) => Int -> g -> m a uniformIntegralWords n gen = go 0 n where go !acc i | i == 0 = return acc | otherwise = do (w :: Word) <- uniformM gen go ((acc `shiftL` wordSizeInBits) .|. fromIntegral w) (i - 1) {-# INLINE uniformIntegralWords #-} -- | Uniformly generate an 'Integral' in an inclusive-inclusive range. -- -- Only use for integrals size less than or equal to that of 'Word32'. unbiasedWordMult32RM :: (StatefulGen g m, Integral a) => (a, a) -> g -> m a unbiasedWordMult32RM (b, t) g | b <= t = (+b) . fromIntegral <$> unbiasedWordMult32 (fromIntegral (t - b)) g | otherwise = (+t) . fromIntegral <$> unbiasedWordMult32 (fromIntegral (b - t)) g {-# SPECIALIZE unbiasedWordMult32RM :: StatefulGen g m => (Word8, Word8) -> g -> m Word8 #-} -- | Uniformly generate Word32 in @[0, s]@. unbiasedWordMult32 :: StatefulGen g m => Word32 -> g -> m Word32 unbiasedWordMult32 s g | s == maxBound = uniformWord32 g | otherwise = unbiasedWordMult32Exclusive (s+1) g {-# INLINE unbiasedWordMult32 #-} -- | See [Lemire's paper](https://arxiv.org/pdf/1805.10941.pdf), -- [O\'Neill's -- blogpost](https://www.pcg-random.org/posts/bounded-rands.html) and -- more directly [O\'Neill's github -- repo](https://github.com/imneme/bounded-rands/blob/3d71f53c975b1e5b29f2f3b05a74e26dab9c3d84/bounded32.cpp#L234). -- N.B. The range is [0,r) **not** [0,r]. unbiasedWordMult32Exclusive :: forall g m . StatefulGen g m => Word32 -> g -> m Word32 unbiasedWordMult32Exclusive r g = go where t :: Word32 t = (-r) `mod` r -- Calculates 2^32 `mod` r!!! go :: StatefulGen g m => m Word32 go = do x <- uniformWord32 g let m :: Word64 m = fromIntegral x * fromIntegral r l :: Word32 l = fromIntegral m if l >= t then return (fromIntegral $ m `shiftR` 32) else go -- | This only works for unsigned integrals unsignedBitmaskWithRejectionRM :: (StatefulGen g m, FiniteBits a, Num a, Ord a, Uniform a) => (a, a) -> g -> m a unsignedBitmaskWithRejectionRM (bottom, top) gen | bottom == top = pure top | otherwise = (b +) <$> unsignedBitmaskWithRejectionM uniformM r gen where (b, r) = if bottom > top then (top, bottom - top) else (bottom, top - bottom) {-# INLINE unsignedBitmaskWithRejectionRM #-} -- | This works for signed integrals by explicit conversion to unsigned and abusing -- overflow. It uses `unsignedBitmaskWithRejectionM`, therefore it requires functions that -- take the value to unsigned and back. signedBitmaskWithRejectionRM :: (Num a, Num b, Ord b, Ord a, FiniteBits a, StatefulGen g f, Uniform a) => (b -> a) -- ^ Convert signed to unsigned. @a@ and @b@ must be of the same size. -> (a -> b) -- ^ Convert unsigned to signed. @a@ and @b@ must be of the same size. -> (b, b) -- ^ Range. -> g -- ^ Generator. -> f b signedBitmaskWithRejectionRM toUnsigned fromUnsigned (bottom, top) gen | bottom == top = pure top | otherwise = (b +) . fromUnsigned <$> unsignedBitmaskWithRejectionM uniformM r gen -- This works in all cases, see Appendix 1 at the end of the file. where (b, r) = if bottom > top then (top, toUnsigned bottom - toUnsigned top) else (bottom, toUnsigned top - toUnsigned bottom) {-# INLINE signedBitmaskWithRejectionRM #-} -- | Detailed explanation about the algorithm employed here can be found in this post: -- http://web.archive.org/web/20200520071940/https://www.pcg-random.org/posts/bounded-rands.html unsignedBitmaskWithRejectionM :: forall a g m . (Ord a, FiniteBits a, Num a, StatefulGen g m) => (g -> m a) -> a -> g -> m a unsignedBitmaskWithRejectionM genUniformM range gen = go where mask :: a mask = complement zeroBits `shiftR` countLeadingZeros (range .|. 1) go = do x <- genUniformM gen let x' = x .&. mask if x' > range then go else pure x' {-# INLINE unsignedBitmaskWithRejectionM #-} ------------------------------------------------------------------------------- -- 'Uniform' instances for tuples ------------------------------------------------------------------------------- instance (Uniform a, Uniform b) => Uniform (a, b) where uniformM g = (,) <$> uniformM g <*> uniformM g instance (Uniform a, Uniform b, Uniform c) => Uniform (a, b, c) where uniformM g = (,,) <$> uniformM g <*> uniformM g <*> uniformM g instance (Uniform a, Uniform b, Uniform c, Uniform d) => Uniform (a, b, c, d) where uniformM g = (,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g instance (Uniform a, Uniform b, Uniform c, Uniform d, Uniform e) => Uniform (a, b, c, d, e) where uniformM g = (,,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g instance (Uniform a, Uniform b, Uniform c, Uniform d, Uniform e, Uniform f) => Uniform (a, b, c, d, e, f) where uniformM g = (,,,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g instance (Uniform a, Uniform b, Uniform c, Uniform d, Uniform e, Uniform f, Uniform g) => Uniform (a, b, c, d, e, f, g) where uniformM g = (,,,,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g -- Appendix 1. -- -- @top@ and @bottom@ are signed integers of bit width @n@. @toUnsigned@ -- converts a signed integer to an unsigned number of the same bit width @n@. -- -- range = toUnsigned top - toUnsigned bottom -- -- This works out correctly thanks to modular arithmetic. Conceptually, -- -- toUnsigned x | x >= 0 = x -- toUnsigned x | x < 0 = 2^n + x -- -- The following combinations are possible: -- -- 1. @bottom >= 0@ and @top >= 0@ -- 2. @bottom < 0@ and @top >= 0@ -- 3. @bottom < 0@ and @top < 0@ -- -- Note that @bottom >= 0@ and @top < 0@ is impossible because of the -- invariant @bottom < top@. -- -- For any signed integer @i@ of width @n@, we have: -- -- -2^(n-1) <= i <= 2^(n-1) - 1 -- -- Considering each combination in turn, we have -- -- 1. @bottom >= 0@ and @top >= 0@ -- -- range = (toUnsigned top - toUnsigned bottom) `mod` 2^n -- --^ top >= 0, so toUnsigned top == top -- --^ bottom >= 0, so toUnsigned bottom == bottom -- = (top - bottom) `mod` 2^n -- --^ top <= 2^(n-1) - 1 and bottom >= 0 -- --^ top - bottom <= 2^(n-1) - 1 -- --^ 0 < top - bottom <= 2^(n-1) - 1 -- = top - bottom -- -- 2. @bottom < 0@ and @top >= 0@ -- -- range = (toUnsigned top - toUnsigned bottom) `mod` 2^n -- --^ top >= 0, so toUnsigned top == top -- --^ bottom < 0, so toUnsigned bottom == 2^n + bottom -- = (top - (2^n + bottom)) `mod` 2^n -- --^ summand -2^n cancels out in calculation modulo 2^n -- = (top - bottom) `mod` 2^n -- --^ top <= 2^(n-1) - 1 and bottom >= -2^(n-1) -- --^ top - bottom <= (2^(n-1) - 1) - (-2^(n-1)) = 2^n - 1 -- --^ 0 < top - bottom <= 2^n - 1 -- = top - bottom -- -- 3. @bottom < 0@ and @top < 0@ -- -- range = (toUnsigned top - toUnsigned bottom) `mod` 2^n -- --^ top < 0, so toUnsigned top == 2^n + top -- --^ bottom < 0, so toUnsigned bottom == 2^n + bottom -- = ((2^n + top) - (2^n + bottom)) `mod` 2^n -- --^ summand 2^n cancels out in calculation modulo 2^n -- = (top - bottom) `mod` 2^n -- --^ top <= -1 -- --^ bottom >= -2^(n-1) -- --^ top - bottom <= -1 - (-2^(n-1)) = 2^(n-1) - 1 -- --^ 0 < top - bottom <= 2^(n-1) - 1 -- = top - bottom