{-# LANGUAGE BangPatterns #-} {-# LANGUAGE CPP #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GHCForeignImportPrim #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MagicHash #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE TypeFamilyDependencies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE UnliftedFFITypes #-} {-# OPTIONS_HADDOCK hide, not-home #-} -- | -- Module : System.Random.Internal -- Copyright : (c) The University of Glasgow 2001 -- License : BSD-style (see the file LICENSE in the 'random' repository) -- Maintainer : libraries@haskell.org -- Stability : stable -- -- This library deals with the common task of pseudo-random number generation. module System.Random.Internal ( -- * Pure and monadic pseudo-random number generator interfaces RandomGen (..), SplitGen (..), Seed (..), -- * Stateful StatefulGen (..), FrozenGen (..), ThawedGen (..), splitGenM, splitMutableGenM, -- * Atomic and Global AtomicGen (..), AtomicGenM (..), newAtomicGenM, applyAtomicGen, globalStdGen, -- ** Standard pseudo-random number generator StdGen (..), mkStdGen, mkStdGen64, theStdGen, -- * Monadic adapters for pure pseudo-random number generators -- ** Pure adapter StateGen (..), StateGenM (..), runStateGen, runStateGen_, runStateGenT, runStateGenT_, runStateGenST, runStateGenST_, -- * Pseudo-random values of various types Uniform (..), #if !defined(__MHS__) uniformViaFiniteM, #endif /* !defined(__MHS__) */ UniformRange (..), uniformWordR, uniformDouble01M, uniformDoublePositive01M, uniformFloat01M, uniformFloatPositive01M, uniformEnumM, uniformEnumRM, uniformListM, uniformListRM, isInRangeOrd, isInRangeEnum, scaleFloating, -- * Generators for sequences of pseudo-random bytes uniformShortByteStringM, uniformByteArray, fillByteArrayST, genShortByteStringIO, genShortByteStringST, defaultUnsafeFillMutableByteArrayT, defaultUnsafeUniformFillMutableByteArray, -- ** Helpers for dealing with MutableByteArray newMutableByteArray, newPinnedMutableByteArray, freezeMutableByteArray, writeWord8, writeWord64LE, indexWord8, indexWord64LE, indexByteSliceWord64LE, sizeOfByteArray, shortByteStringToByteArray, byteArrayToShortByteString, ) where import Control.Arrow import Control.DeepSeq (NFData) import Control.Monad (replicateM, when, (>=>)) import Control.Monad.Cont (ContT, runContT) import Control.Monad.IO.Class import Control.Monad.ST import Control.Monad.State.Strict (MonadState (..), State, StateT (..), execStateT, runState, runStateT) import Control.Monad.Trans (MonadTrans, lift) import Control.Monad.Trans.Identity (IdentityT (runIdentityT)) import Data.Array.Byte (ByteArray (..), MutableByteArray (..)) import Data.Bits import Data.ByteString.Short.Internal (ShortByteString (SBS)) import Data.IORef import Data.Int import Data.Kind import Data.Word import Foreign.C.Types import Foreign.Storable (Storable) import GHC.Exts #if !defined(__MHS__) import GHC.Generics import GHC.IO (IO (..)) import GHC.ST (ST (..)) import GHC.Word #else /* !defined(__MHS__) */ import Data.Coerce #endif /* !defined(__MHS__) */ import Numeric.Natural (Natural) import System.IO.Unsafe (unsafePerformIO) import System.Random.Array #if !defined(__MHS__) import System.Random.GFinite (Cardinality (..), Finite, GFinite (..)) #endif /* __MHS__ */ import qualified System.Random.SplitMix as SM import qualified System.Random.SplitMix32 as SM32 #if __GLASGOW_HASKELL__ >= 808 import GHC.IORef (atomicModifyIORef2Lazy) #endif -- | This is a binary form of pseudo-random number generator's state. It is designed to be -- safe and easy to use for input/output operations like restoring from file, transmitting -- over the network, etc. -- -- Constructor is not exported, becasue it is important for implementation to enforce the -- invariant of the underlying byte array being of the exact same length as the generator has -- specified in `System.Random.Seed.SeedSize`. Use `System.Random.Seed.mkSeed` and -- `System.Random.Seed.unSeed` to get access to the raw bytes in a safe manner. -- -- @since 1.3.0 newtype Seed g = Seed ByteArray deriving (Eq, Ord, Show) -- | 'RandomGen' is an interface to pure pseudo-random number generators. -- -- 'StdGen' is the standard 'RandomGen' instance provided by this library. -- -- @since 1.0.0 class RandomGen g where {-# MINIMAL (genWord32 | genWord64 | (next, genRange)) #-} -- | Returns an 'Int' that is uniformly distributed over the range returned by -- 'genRange' (including both end points), and a new generator. Using 'next' -- is inefficient as all operations go via 'Integer'. See -- [here](https://alexey.kuleshevi.ch/blog/2019/12/21/random-benchmarks) for -- more details. It is thus deprecated. -- -- @since 1.0.0 next :: g -> (Int, g) next g = runStateGen g (uniformRM (genRange g)) -- | Returns a 'Word8' that is uniformly distributed over the entire 'Word8' -- range. -- -- @since 1.2.0 genWord8 :: g -> (Word8, g) genWord8 = first fromIntegral . genWord32 {-# INLINE genWord8 #-} -- | Returns a 'Word16' that is uniformly distributed over the entire 'Word16' -- range. -- -- @since 1.2.0 genWord16 :: g -> (Word16, g) genWord16 = first fromIntegral . genWord32 {-# INLINE genWord16 #-} -- | Returns a 'Word32' that is uniformly distributed over the entire 'Word32' -- range. -- -- @since 1.2.0 genWord32 :: g -> (Word32, g) genWord32 = randomIvalIntegral (minBound, maxBound) -- Once `next` is removed, this implementation should be used instead: -- first fromIntegral . genWord64 {-# INLINE genWord32 #-} -- | Returns a 'Word64' that is uniformly distributed over the entire 'Word64' -- range. -- -- @since 1.2.0 genWord64 :: g -> (Word64, g) genWord64 g = case genWord32 g of (l32, g') -> case genWord32 g' of (h32, g'') -> ((fromIntegral h32 `shiftL` 32) .|. fromIntegral l32, g'') {-# INLINE genWord64 #-} -- | @genWord32R upperBound g@ returns a 'Word32' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 genWord32R :: Word32 -> g -> (Word32, g) genWord32R m g = runStateGen g (unbiasedWordMult32 m) {-# INLINE genWord32R #-} -- | @genWord64R upperBound g@ returns a 'Word64' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 genWord64R :: Word64 -> g -> (Word64, g) genWord64R m g = runStateGen g (unsignedBitmaskWithRejectionM uniformWord64 m) {-# INLINE genWord64R #-} -- | Same as @`uniformByteArray` `False`@, but for `ShortByteString`. -- -- @genShortByteString n g@ returns a 'ShortByteString' of length @n@ filled with -- pseudo-random bytes. -- -- /Note/ - This function will be removed from the type class in the next major release as -- it is no longer needed because of `unsafeUniformFillMutableByteArray`. -- -- @since 1.2.0 genShortByteString :: Int -> g -> (ShortByteString, g) genShortByteString n g = case uniformByteArray False n g of #if !defined(__MHS__) (ByteArray ba#, g') -> (SBS ba#, g') {-# INLINE genShortByteString #-} #else (ba, g') -> (byteArrayToShortByteString ba, g') #endif /* !defined(__MHS__) */ -- | Fill in the supplied `MutableByteArray` with uniformly generated random bytes. This function -- is unsafe because it is not required to do any bounds checking. For a safe variant use -- `System.Random.Sateful.uniformFillMutableByteArrayM` instead. -- -- Default type class implementation uses `defaultUnsafeUniformFillMutableByteArray`. -- -- @since 1.3.0 unsafeUniformFillMutableByteArray :: -- | Mutable array to fill with random bytes MutableByteArray s -> -- | Offset into a mutable array from the beginning in number of bytes. Offset must -- be non-negative, but this will not be checked Int -> -- | Number of randomly generated bytes to write into the array. Number of bytes -- must be non-negative and less then the total size of the array, minus the -- offset. This also will be checked. Int -> g -> ST s g unsafeUniformFillMutableByteArray = defaultUnsafeUniformFillMutableByteArray {-# INLINE unsafeUniformFillMutableByteArray #-} -- | Yields the range of values returned by 'next'. -- -- It is required that: -- -- * If @(a, b) = 'genRange' g@, then @a < b@. -- * 'genRange' must not examine its argument so the value it returns is -- determined only by the instance of 'RandomGen'. -- -- The default definition spans the full range of 'Int'. -- -- @since 1.0.0 genRange :: g -> (Int, Int) genRange _ = (minBound, maxBound) -- | Returns two distinct pseudo-random number generators. -- -- Implementations should take care to ensure that the resulting generators -- are not correlated. Some pseudo-random number generators are not -- splittable. In that case, the 'split' implementation should fail with a -- descriptive 'error' message. -- -- @since 1.0.0 split :: g -> (g, g) default split :: SplitGen g => g -> (g, g) split = splitGen {-# DEPRECATED next "No longer used" #-} {-# DEPRECATED genRange "No longer used" #-} {-# DEPRECATED split "In favor of `splitGen`" #-} {-# DEPRECATED genShortByteString "In favor of `System.Random.uniformShortByteString`" #-} -- | Pseudo-random generators that can be split into two separate and independent -- psuedo-random generators should provide an instance for this type class. -- -- Historically this functionality was included in the `RandomGen` type class in the -- `split` function, however, few pseudo-random generators possess this property of -- splittability. This lead the old `split` function being usually implemented in terms of -- `error`. -- -- @since 1.3.0 class RandomGen g => SplitGen g where -- | Returns two distinct pseudo-random number generators. -- -- Implementations should take care to ensure that the resulting generators -- are not correlated. -- -- @since 1.3.0 splitGen :: g -> (g, g) -- | 'StatefulGen' is an interface to monadic pseudo-random number generators. -- -- @since 1.2.0 class Monad m => StatefulGen g m where {-# MINIMAL uniformWord32 | uniformWord64 #-} -- | @uniformWord32R upperBound g@ generates a 'Word32' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 uniformWord32R :: Word32 -> g -> m Word32 uniformWord32R = unsignedBitmaskWithRejectionM uniformWord32 {-# INLINE uniformWord32R #-} -- | @uniformWord64R upperBound g@ generates a 'Word64' that is uniformly -- distributed over the range @[0, upperBound]@. -- -- @since 1.2.0 uniformWord64R :: Word64 -> g -> m Word64 uniformWord64R = unsignedBitmaskWithRejectionM uniformWord64 {-# INLINE uniformWord64R #-} -- | Generates a 'Word8' that is uniformly distributed over the entire 'Word8' -- range. -- -- The default implementation extracts a 'Word8' from 'uniformWord32'. -- -- @since 1.2.0 uniformWord8 :: g -> m Word8 uniformWord8 = fmap fromIntegral . uniformWord32 {-# INLINE uniformWord8 #-} -- | Generates a 'Word16' that is uniformly distributed over the entire -- 'Word16' range. -- -- The default implementation extracts a 'Word16' from 'uniformWord32'. -- -- @since 1.2.0 uniformWord16 :: g -> m Word16 uniformWord16 = fmap fromIntegral . uniformWord32 {-# INLINE uniformWord16 #-} -- | Generates a 'Word32' that is uniformly distributed over the entire -- 'Word32' range. -- -- The default implementation extracts a 'Word32' from 'uniformWord64'. -- -- @since 1.2.0 uniformWord32 :: g -> m Word32 uniformWord32 = fmap fromIntegral . uniformWord64 {-# INLINE uniformWord32 #-} -- | Generates a 'Word64' that is uniformly distributed over the entire -- 'Word64' range. -- -- The default implementation combines two 'Word32' from 'uniformWord32' into -- one 'Word64'. -- -- @since 1.2.0 uniformWord64 :: g -> m Word64 uniformWord64 g = do l32 <- uniformWord32 g h32 <- uniformWord32 g pure (shiftL (fromIntegral h32) 32 .|. fromIntegral l32) {-# INLINE uniformWord64 #-} -- | @uniformByteArrayM n g@ generates a 'ByteArray' of length @n@ -- filled with pseudo-random bytes. -- -- @since 1.3.0 uniformByteArrayM :: -- | Should `ByteArray` be allocated as pinned memory or not Bool -> -- | Size of the newly created `ByteArray` in number of bytes. Int -> -- | Generator to use for filling in the newly created `ByteArray` g -> m ByteArray #if !defined(__MHS__) default uniformByteArrayM :: (RandomGen f, FrozenGen f m, g ~ MutableGen f m) => Bool -> Int -> g -> m ByteArray uniformByteArrayM isPinned n g = modifyGen g (uniformByteArray isPinned n) #endif /* !defined(__MHS__) */ {-# INLINE uniformByteArrayM #-} -- | @uniformShortByteString n g@ generates a 'ShortByteString' of length @n@ -- filled with pseudo-random bytes. -- -- @since 1.2.0 uniformShortByteString :: Int -> g -> m ShortByteString uniformShortByteString = uniformShortByteStringM {-# INLINE uniformShortByteString #-} {-# DEPRECATED uniformShortByteString "In favor of `uniformShortByteStringM`" #-} -- | This class is designed for mutable pseudo-random number generators that have a frozen -- imutable counterpart that can be manipulated in pure code. -- -- It also works great with frozen generators that are based on pure generators that have -- a `RandomGen` instance. -- -- Here are a few laws, which are important for this type class: -- -- * Roundtrip and complete destruction on overwrite: -- -- @ -- overwriteGen mg fg >> freezeGen mg = pure fg -- @ -- -- * Modification of a mutable generator: -- -- @ -- overwriteGen mg fg = modifyGen mg (const ((), fg) -- @ -- -- * Freezing of a mutable generator: -- -- @ -- freezeGen mg = modifyGen mg (\fg -> (fg, fg)) -- @ -- -- @since 1.2.0 #if !defined(__MHS__) class StatefulGen (MutableGen f m) m => FrozenGen f m where {-# MINIMAL (modifyGen | (freezeGen, overwriteGen)) #-} -- | Represents the state of the pseudo-random number generator for use with -- 'thawGen' and 'freezeGen'. -- -- @since 1.2.0 type MutableGen f m = (g :: Type) | g -> f -- | Saves the state of the pseudo-random number generator as a frozen seed. -- -- @since 1.2.0 freezeGen :: MutableGen f m -> m f freezeGen mg = modifyGen mg (\fg -> (fg, fg)) {-# INLINE freezeGen #-} -- | Apply a pure function to the frozen pseudo-random number generator. -- -- @since 1.3.0 modifyGen :: MutableGen f m -> (f -> (a, f)) -> m a modifyGen mg f = do fg <- freezeGen mg case f fg of (a, !fg') -> a <$ overwriteGen mg fg' {-# INLINE modifyGen #-} -- | Overwrite contents of the mutable pseudo-random number generator with the -- supplied frozen one -- -- @since 1.3.0 overwriteGen :: MutableGen f m -> f -> m () overwriteGen mg fg = modifyGen mg (const ((), fg)) {-# INLINE overwriteGen #-} #else class StatefulGen mutableGen m => FrozenGen f m mutableGen | mutableGen -> f where freezeGen :: mutableGen -> m f freezeGen mg = modifyGen mg (\fg -> (fg, fg)) modifyGen :: mutableGen -> (f -> (a, f)) -> m a modifyGen mg f = do fg <- freezeGen mg case f fg of (a, !fg') -> a <$ overwriteGen mg fg' overwriteGen :: mutableGen -> f -> m () overwriteGen mg fg = modifyGen mg (const ((), fg)) #endif /* !defined(__MHS__) */ -- | Functionality for thawing frozen generators is not part of the `FrozenGen` class, -- becase not all mutable generators support functionality of creating new mutable -- generators, which is what thawing is in its essence. For this reason `StateGen` does -- not have an instance for this type class, but it has one for `FrozenGen`. -- -- Here is an important law that relates this type class to `FrozenGen` -- -- * Roundtrip and independence of mutable generators: -- -- @ -- traverse thawGen fgs >>= traverse freezeGen = pure fgs -- @ -- -- @since 1.3.0 #if !defined(__MHS__) class FrozenGen f m => ThawedGen f m where -- | Create a new mutable pseudo-random number generator from its frozen state. -- -- @since 1.2.0 thawGen :: f -> m (MutableGen f m) -- | Splits a pseudo-random number generator into two. Overwrites the mutable -- pseudo-random number generator with one of the immutable pseudo-random number -- generators produced by a `split` function and returns the other. -- -- @since 1.3.0 splitGenM :: (SplitGen f, FrozenGen f m) => MutableGen f m -> m f splitGenM = flip modifyGen splitGen -- | Splits a pseudo-random number generator into two. Overwrites the mutable wrapper with -- one of the resulting generators and returns the other as a new mutable generator. -- -- @since 1.3.0 splitMutableGenM :: (SplitGen f, ThawedGen f m) => MutableGen f m -> m (MutableGen f m) splitMutableGenM = splitGenM >=> thawGen #else /* !defined(__MHS__) */ class FrozenGen f m mutableGen => ThawedGen f m mutableGen where thawGen :: f -> m mutableGen splitGenM :: (SplitGen f, FrozenGen f m mutableGen) => mutableGen -> m f splitGenM = flip modifyGen splitGen splitMutableGenM :: (SplitGen f, ThawedGen f m mutableGen) => mutableGen -> m mutableGen splitMutableGenM = splitGenM >=> thawGen #endif /* !defined(__MHS__) */ -- | Efficiently generates a sequence of pseudo-random bytes in a platform -- independent manner. -- -- @since 1.3.0 uniformByteArray :: RandomGen g => -- | Should byte array be allocated in pinned or unpinned memory. Bool -> -- | Number of bytes to generate Int -> -- | Pure pseudo-random numer generator g -> (ByteArray, g) uniformByteArray isPinned n0 g = runST $ do let !n = max 0 n0 mba <- if isPinned then newPinnedMutableByteArray n else newMutableByteArray n g' <- unsafeUniformFillMutableByteArray mba 0 n g ba <- freezeMutableByteArray mba pure (ba, g') {-# INLINE uniformByteArray #-} -- | Using an `ST` action that generates 8 bytes at a time fill in a new `ByteArray` in -- architecture agnostic manner. -- -- @since 1.3.0 fillByteArrayST :: Bool -> Int -> ST s Word64 -> ST s ByteArray fillByteArrayST isPinned n0 action = do let !n = max 0 n0 mba <- if isPinned then newPinnedMutableByteArray n else newMutableByteArray n runIdentityT $ defaultUnsafeFillMutableByteArrayT mba 0 n (lift action) freezeMutableByteArray mba {-# INLINE fillByteArrayST #-} defaultUnsafeFillMutableByteArrayT :: (Monad (t (ST s)), MonadTrans t) => MutableByteArray s -> Int -> Int -> t (ST s) Word64 -> t (ST s) () defaultUnsafeFillMutableByteArrayT mba offset n gen64 = do let !n64 = n `quot` 8 !endIx64 = offset + n64 * 8 !nrem = n `rem` 8 let go !i = when (i < endIx64) $ do w64 <- gen64 -- Writing 8 bytes at a time in a Little-endian order gives us -- platform portability lift $ writeWord64LE mba i w64 go (i + 8) go offset when (nrem > 0) $ do let !endIx = offset + n w64 <- gen64 -- In order to not mess up the byte order we write 1 byte at a time in -- Little endian order. It is tempting to simply generate as many bytes as we -- still need using smaller generators (eg. uniformWord8), but that would -- result in inconsistent tail when total length is slightly varied. lift $ writeByteSliceWord64LE mba (endIx - nrem) endIx w64 {-# INLINEABLE defaultUnsafeFillMutableByteArrayT #-} {-# SPECIALIZE defaultUnsafeFillMutableByteArrayT :: MutableByteArray s -> Int -> Int -> IdentityT (ST s) Word64 -> IdentityT (ST s) () #-} {-# SPECIALIZE defaultUnsafeFillMutableByteArrayT :: MutableByteArray s -> Int -> Int -> StateT g (ST s) Word64 -> StateT g (ST s) () #-} -- | Efficiently generates a sequence of pseudo-random bytes in a platform -- independent manner. -- -- @since 1.2.0 defaultUnsafeUniformFillMutableByteArray :: RandomGen g => MutableByteArray s -> -- | Starting offset Int -> -- | Number of random bytes to write into the array Int -> -- | ST action that can generate 8 random bytes at a time g -> ST s g defaultUnsafeUniformFillMutableByteArray mba i0 n g = flip execStateT g $ defaultUnsafeFillMutableByteArrayT mba i0 n (state genWord64) {-# INLINE defaultUnsafeUniformFillMutableByteArray #-} -- | Same as 'genShortByteStringIO', but runs in 'ST'. -- -- @since 1.2.0 genShortByteStringST :: Int -> ST s Word64 -> ST s ShortByteString genShortByteStringST n0 action = byteArrayToShortByteString <$> fillByteArrayST False n0 action {-# INLINE genShortByteStringST #-} {-# DEPRECATED genShortByteStringST "In favor of `fillByteArrayST`, since `uniformShortByteString`, which it was used for, was also deprecated" #-} -- | Efficiently fills in a new `ShortByteString` in a platform independent manner. -- -- @since 1.2.0 genShortByteStringIO :: -- | Number of bytes to generate Int -> -- | IO action that can generate 8 random bytes at a time IO Word64 -> IO ShortByteString genShortByteStringIO n ioAction = stToIO $ genShortByteStringST n (ioToST ioAction) {-# INLINE genShortByteStringIO #-} {-# DEPRECATED genShortByteStringIO "In favor of `fillByteArrayST`" #-} -- | @uniformShortByteString n g@ generates a 'ShortByteString' of length @n@ -- filled with pseudo-random bytes. -- -- @since 1.3.0 uniformShortByteStringM :: StatefulGen g m => Int -> g -> m ShortByteString uniformShortByteStringM n g = byteArrayToShortByteString <$> uniformByteArrayM False n g {-# INLINE uniformShortByteStringM #-} -- | Opaque data type that carries the type of a pure pseudo-random number -- generator. -- -- @since 1.2.0 data StateGenM g = StateGenM -- | Wrapper for pure state gen, which acts as an immutable seed for the corresponding -- stateful generator `StateGenM` -- -- @since 1.2.0 newtype StateGen g = StateGen {unStateGen :: g} deriving (Eq, Ord, Show, RandomGen, SplitGen, Storable, NFData) instance (RandomGen g, MonadState g m) => StatefulGen (StateGenM g) m where uniformWord32R r _ = state (genWord32R r) {-# INLINE uniformWord32R #-} uniformWord64R r _ = state (genWord64R r) {-# INLINE uniformWord64R #-} uniformWord8 _ = state genWord8 {-# INLINE uniformWord8 #-} uniformWord16 _ = state genWord16 {-# INLINE uniformWord16 #-} uniformWord32 _ = state genWord32 {-# INLINE uniformWord32 #-} uniformWord64 _ = state genWord64 {-# INLINE uniformWord64 #-} #if !defined(__MHS__) instance (RandomGen g, MonadState g m) => FrozenGen (StateGen g) m where type MutableGen (StateGen g) m = StateGenM g #else /* !defined(__MHS__) */ instance (RandomGen g, MonadState g m) => FrozenGen (StateGen g) m (StateGenM g) where #endif /* !defined(__MHS__) */ freezeGen _ = fmap StateGen get modifyGen _ f = state (coerce f) {-# INLINE modifyGen #-} overwriteGen _ f = put (coerce f) {-# INLINE overwriteGen #-} -- | Runs a monadic generating action in the `State` monad using a pure -- pseudo-random number generator. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGen pureGen randomM :: (Int, StdGen) -- (7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627}) -- -- @since 1.2.0 runStateGen :: RandomGen g => g -> (StateGenM g -> State g a) -> (a, g) runStateGen g f = runState (f StateGenM) g {-# INLINE runStateGen #-} -- | Runs a monadic generating action in the `State` monad using a pure -- pseudo-random number generator. Returns only the resulting pseudo-random -- value. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGen_ pureGen randomM :: Int -- 7879794327570578227 -- -- @since 1.2.0 runStateGen_ :: RandomGen g => g -> (StateGenM g -> State g a) -> a runStateGen_ g = fst . runStateGen g {-# INLINE runStateGen_ #-} -- | Runs a monadic generating action in the `StateT` monad using a pure -- pseudo-random number generator. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGenT pureGen randomM :: IO (Int, StdGen) -- (7879794327570578227,StdGen {unStdGen = SMGen 11285859549637045894 7641485672361121627}) -- -- @since 1.2.0 runStateGenT :: RandomGen g => g -> (StateGenM g -> StateT g m a) -> m (a, g) runStateGenT g f = runStateT (f StateGenM) g {-# INLINE runStateGenT #-} -- | Runs a monadic generating action in the `StateT` monad using a pure -- pseudo-random number generator. Returns only the resulting pseudo-random -- value. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> runStateGenT_ pureGen randomM :: IO Int -- 7879794327570578227 -- -- @since 1.2.1 runStateGenT_ :: (RandomGen g, Functor f) => g -> (StateGenM g -> StateT g f a) -> f a runStateGenT_ g = fmap fst . runStateGenT g {-# INLINE runStateGenT_ #-} -- | Runs a monadic generating action in the `ST` monad using a pure -- pseudo-random number generator. -- -- @since 1.2.0 runStateGenST :: RandomGen g => g -> (forall s. StateGenM g -> StateT g (ST s) a) -> (a, g) runStateGenST g action = runST $ runStateGenT g action {-# INLINE runStateGenST #-} -- | Runs a monadic generating action in the `ST` monad using a pure -- pseudo-random number generator. Same as `runStateGenST`, but discards the -- resulting generator. -- -- @since 1.2.1 runStateGenST_ :: RandomGen g => g -> (forall s. StateGenM g -> StateT g (ST s) a) -> a runStateGenST_ g action = runST $ runStateGenT_ g action {-# INLINE runStateGenST_ #-} -- | Generates a list of pseudo-random values. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> g <- newIOGenM pureGen -- >>> uniformListM 10 g :: IO [Bool] -- [True,True,True,True,False,True,True,False,False,False] -- -- @since 1.2.0 uniformListM :: (StatefulGen g m, Uniform a) => Int -> g -> m [a] uniformListM n gen = replicateM n (uniformM gen) {-# INLINE uniformListM #-} -- | Generates a list of pseudo-random values in a specified range. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> g <- newIOGenM pureGen -- >>> uniformListRM 10 (20, 30) g :: IO [Int] -- [23,21,28,25,28,28,26,25,29,27] -- -- @since 1.3.0 uniformListRM :: (StatefulGen g m, UniformRange a) => Int -> (a, a) -> g -> m [a] uniformListRM n range gen = replicateM n (uniformRM range gen) {-# INLINE uniformListRM #-} -- | The standard pseudo-random number generator. newtype StdGen = StdGen {unStdGen :: SM.SMGen} deriving (Show, RandomGen, SplitGen, NFData) instance Eq StdGen where StdGen x1 == StdGen x2 = SM.unseedSMGen x1 == SM.unseedSMGen x2 instance RandomGen SM.SMGen where next = SM.nextInt {-# INLINE next #-} genWord32 = SM.nextWord32 {-# INLINE genWord32 #-} genWord64 = SM.nextWord64 {-# INLINE genWord64 #-} -- Despite that this is the same default implementation as in the type class definition, -- for some mysterious reason without this overwrite, performance of ByteArray generation -- slows down by a factor of x4: unsafeUniformFillMutableByteArray = defaultUnsafeUniformFillMutableByteArray {-# INLINE unsafeUniformFillMutableByteArray #-} instance SplitGen SM.SMGen where splitGen = SM.splitSMGen {-# INLINE splitGen #-} instance RandomGen SM32.SMGen where next = SM32.nextInt {-# INLINE next #-} genWord32 = SM32.nextWord32 {-# INLINE genWord32 #-} genWord64 = SM32.nextWord64 {-# INLINE genWord64 #-} instance SplitGen SM32.SMGen where splitGen = SM32.splitSMGen {-# INLINE splitGen #-} -- | Constructs a 'StdGen' deterministically from an `Int` seed. See `mkStdGen64` for a `Word64` -- variant that is architecture agnostic. mkStdGen :: Int -> StdGen mkStdGen = mkStdGen64 . fromIntegral -- | Constructs a 'StdGen' deterministically from a `Word64` seed. -- -- The difference between `mkStdGen` is that `mkStdGen64` will work the same on 64-bit and -- 32-bit architectures, while the former can only use 32-bit of information for -- initializing the psuedo-random number generator on 32-bit operating systems -- -- @since 1.3.0 mkStdGen64 :: Word64 -> StdGen mkStdGen64 = StdGen . SM.mkSMGen -- | Global mutable veriable with `StdGen` theStdGen :: IORef StdGen theStdGen = unsafePerformIO $ SM.initSMGen >>= newIORef . StdGen {-# NOINLINE theStdGen #-} -- | The class of types for which a uniformly distributed value can be drawn -- from all possible values of the type. -- -- @since 1.2.0 class Uniform a where -- | Generates a value uniformly distributed over all possible values of that -- type. -- -- There is a default implementation via 'Generic': -- -- >>> :seti -XDeriveGeneric -XDeriveAnyClass -- >>> import GHC.Generics (Generic) -- >>> import System.Random.Stateful -- >>> data MyBool = MyTrue | MyFalse deriving (Show, Generic, Finite, Uniform) -- >>> data Action = Code MyBool | Eat (Maybe Bool) | Sleep deriving (Show, Generic, Finite, Uniform) -- >>> gen <- newIOGenM (mkStdGen 42) -- >>> uniformListM 10 gen :: IO [Action] -- [Code MyTrue,Code MyTrue,Eat Nothing,Code MyFalse,Eat (Just False),Eat (Just True),Eat Nothing,Eat (Just False),Sleep,Code MyFalse] -- -- @since 1.2.0 uniformM :: StatefulGen g m => g -> m a #if !defined(__MHS__) default uniformM :: (StatefulGen g m, Generic a, GUniform (Rep a)) => g -> m a uniformM = fmap to . (`runContT` pure) . guniformM {-# INLINE uniformM #-} #endif /* !defined(__MHS__) */ #if !defined(__MHS__) -- | Default implementation of 'Uniform' type class for 'Generic' data. -- It's important to use 'ContT', because without it 'fmap' and '>>=' remain -- polymorphic too long and GHC fails to inline or specialize it, ending up -- building full 'Rep' a structure in memory. 'ContT' -- makes 'fmap' and '>>=' used in 'guniformM' monomorphic, so GHC is able to -- specialize 'Generic' instance reasonably close to a handwritten one. class GUniform f where guniformM :: StatefulGen g m => g -> ContT r m (f a) instance GUniform f => GUniform (M1 i c f) where guniformM = fmap M1 . guniformM {-# INLINE guniformM #-} instance Uniform a => GUniform (K1 i a) where guniformM = fmap K1 . lift . uniformM {-# INLINE guniformM #-} instance GUniform U1 where guniformM = const $ return U1 {-# INLINE guniformM #-} instance (GUniform f, GUniform g) => GUniform (f :*: g) where guniformM g = (:*:) <$> guniformM g <*> guniformM g {-# INLINE guniformM #-} instance (GFinite f, GFinite g) => GUniform (f :+: g) where guniformM = lift . finiteUniformM {-# INLINE guniformM #-} finiteUniformM :: forall g m f a. (StatefulGen g m, GFinite f) => g -> m (f a) finiteUniformM = fmap toGFinite . case gcardinality (proxy# :: Proxy# f) of Shift n | n <= 64 -> fmap toInteger . unsignedBitmaskWithRejectionM uniformWord64 (bit n - 1) | otherwise -> boundedByPowerOf2ExclusiveIntegralM n Card n | n <= bit 64 -> fmap toInteger . unsignedBitmaskWithRejectionM uniformWord64 (fromInteger n - 1) | otherwise -> boundedExclusiveIntegralM n {-# INLINE finiteUniformM #-} -- | A definition of 'Uniform' for 'System.Random.Finite' types. -- If your data has several fields of sub-'Word' cardinality, -- this instance may be more efficient than one, derived via 'Generic' and 'GUniform'. -- -- >>> :seti -XDeriveGeneric -XDeriveAnyClass -- >>> import GHC.Generics (Generic) -- >>> import System.Random.Stateful -- >>> data Triple = Triple Word8 Word8 Word8 deriving (Show, Generic, Finite) -- >>> instance Uniform Triple where uniformM = uniformViaFiniteM -- >>> gen <- newIOGenM (mkStdGen 42) -- >>> uniformListM 5 gen :: IO [Triple] -- [Triple 60 226 48,Triple 234 194 151,Triple 112 96 95,Triple 51 251 15,Triple 6 0 208] uniformViaFiniteM :: (StatefulGen g m, Generic a, GFinite (Rep a)) => g -> m a uniformViaFiniteM = fmap to . finiteUniformM {-# INLINE uniformViaFiniteM #-} #endif /* !defined(__MHS__) */ -- | The class of types for which a uniformly distributed value can be drawn -- from a range. -- -- @since 1.2.0 class UniformRange a where -- | Generates a value uniformly distributed over the provided range, which -- is interpreted as inclusive in the lower and upper bound. -- -- * @uniformRM (1 :: Int, 4 :: Int)@ generates values uniformly from the -- set \(\{1,2,3,4\}\) -- -- * @uniformRM (1 :: Float, 4 :: Float)@ generates values uniformly from -- the set \(\{x\;|\;1 \le x \le 4\}\) -- -- The following law should hold to make the function always defined: -- -- > uniformRM (a, b) = uniformRM (b, a) -- -- The range is understood as defined by means of 'isInRange', so -- -- > isInRange (a, b) <$> uniformRM (a, b) gen == pure True -- -- but beware of -- [floating point number caveats](System-Random-Stateful.html#fpcaveats). -- -- There is a default implementation via 'Generic': -- -- >>> :seti -XDeriveGeneric -XDeriveAnyClass -- >>> import GHC.Generics (Generic) -- >>> import Data.Word (Word8) -- >>> import Control.Monad (replicateM) -- >>> import System.Random.Stateful -- >>> gen <- newIOGenM (mkStdGen 42) -- >>> data Tuple = Tuple Bool Word8 deriving (Show, Generic, UniformRange) -- >>> replicateM 10 (uniformRM (Tuple False 100, Tuple True 150) gen) -- [Tuple False 102,Tuple True 118,Tuple False 115,Tuple True 113,Tuple True 126,Tuple False 127,Tuple True 130,Tuple False 113,Tuple False 150,Tuple False 125] -- -- @since 1.2.0 uniformRM :: StatefulGen g m => (a, a) -> g -> m a -- | A notion of (inclusive) ranges prescribed to @a@. -- -- Ranges are symmetric: -- -- > isInRange (lo, hi) x == isInRange (hi, lo) x -- -- Ranges include their endpoints: -- -- > isInRange (lo, hi) lo == True -- -- When endpoints coincide, there is nothing else: -- -- > isInRange (x, x) y == x == y -- -- Endpoints are endpoints: -- -- > isInRange (lo, hi) x ==> -- > isInRange (lo, x) hi == x == hi -- -- Ranges are transitive relations: -- -- > isInRange (lo, hi) lo' && isInRange (lo, hi) hi' && isInRange (lo', hi') x -- > ==> isInRange (lo, hi) x -- -- There is a default implementation of 'isInRange' via 'Generic'. Other helper function -- that can be used for implementing this function are `isInRangeOrd` and -- `isInRangeEnum`. -- -- Note that the @isRange@ method from @Data.Ix@ is /not/ a suitable default -- implementation of 'isInRange'. Unlike 'isInRange', @isRange@ is not -- required to be symmetric, and many @isRange@ implementations are not -- symmetric in practice. -- -- @since 1.3.0 isInRange :: (a, a) -> a -> Bool #if !defined(__MHS__) default uniformRM :: (StatefulGen g m, Generic a, GUniformRange (Rep a)) => (a, a) -> g -> m a uniformRM (a, b) = fmap to . (`runContT` pure) . guniformRM (from a, from b) {-# INLINE uniformRM #-} default isInRange :: (Generic a, GUniformRange (Rep a)) => (a, a) -> a -> Bool isInRange (a, b) x = gisInRange (from a, from b) (from x) {-# INLINE isInRange #-} class GUniformRange f where guniformRM :: StatefulGen g m => (f a, f a) -> g -> ContT r m (f a) gisInRange :: (f a, f a) -> f a -> Bool instance GUniformRange f => GUniformRange (M1 i c f) where guniformRM (M1 a, M1 b) = fmap M1 . guniformRM (a, b) {-# INLINE guniformRM #-} gisInRange (M1 a, M1 b) (M1 x) = gisInRange (a, b) x instance UniformRange a => GUniformRange (K1 i a) where guniformRM (K1 a, K1 b) = fmap K1 . lift . uniformRM (a, b) {-# INLINE guniformRM #-} gisInRange (K1 a, K1 b) (K1 x) = isInRange (a, b) x instance GUniformRange U1 where guniformRM = const $ const $ return U1 {-# INLINE guniformRM #-} gisInRange = const $ const True instance (GUniformRange f, GUniformRange g) => GUniformRange (f :*: g) where guniformRM (x1 :*: y1, x2 :*: y2) g = (:*:) <$> guniformRM (x1, x2) g <*> guniformRM (y1, y2) g {-# INLINE guniformRM #-} gisInRange (x1 :*: y1, x2 :*: y2) (x3 :*: y3) = gisInRange (x1, x2) x3 && gisInRange (y1, y2) y3 #endif /* !defined(__MHS__) */ -- | Utilize `Ord` instance to decide if a value is within the range. Designed to be used -- for implementing `isInRange` -- -- @since 1.3.0 isInRangeOrd :: Ord a => (a, a) -> a -> Bool isInRangeOrd (a, b) x = min a b <= x && x <= max a b -- | Utilize `Enum` instance to decide if a value is within the range. Designed to be used -- for implementing `isInRange` -- -- @since 1.3.0 isInRangeEnum :: Enum a => (a, a) -> a -> Bool isInRangeEnum (a, b) x = isInRangeOrd (fromEnum a, fromEnum b) (fromEnum x) instance UniformRange Integer where uniformRM = uniformIntegralM {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance UniformRange Natural where uniformRM = uniformIntegralM {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Int8 where uniformM = fmap (fromIntegral :: Word8 -> Int8) . uniformWord8 {-# INLINE uniformM #-} instance UniformRange Int8 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int8 -> Word8) fromIntegral {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Int16 where uniformM = fmap (fromIntegral :: Word16 -> Int16) . uniformWord16 {-# INLINE uniformM #-} instance UniformRange Int16 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int16 -> Word16) fromIntegral {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Int32 where uniformM = fmap (fromIntegral :: Word32 -> Int32) . uniformWord32 {-# INLINE uniformM #-} instance UniformRange Int32 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int32 -> Word32) fromIntegral {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Int64 where uniformM = fmap (fromIntegral :: Word64 -> Int64) . uniformWord64 {-# INLINE uniformM #-} instance UniformRange Int64 where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int64 -> Word64) fromIntegral {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Int where uniformM | wordSizeInBits == 64 = fmap (fromIntegral :: Word64 -> Int) . uniformWord64 | otherwise = fmap (fromIntegral :: Word32 -> Int) . uniformWord32 {-# INLINE uniformM #-} instance UniformRange Int where uniformRM = signedBitmaskWithRejectionRM (fromIntegral :: Int -> Word) fromIntegral {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Word where uniformM | wordSizeInBits == 64 = fmap (fromIntegral :: Word64 -> Word) . uniformWord64 | otherwise = fmap (fromIntegral :: Word32 -> Word) . uniformWord32 {-# INLINE uniformM #-} instance UniformRange Word where uniformRM = unsignedBitmaskWithRejectionRM {-# INLINE uniformRM #-} isInRange = isInRangeOrd -- | Architecture specific `Word` generation in the specified lower range -- -- @since 1.3.0 uniformWordR :: StatefulGen g m => -- | Maximum value to generate Word -> -- | Stateful generator g -> m Word uniformWordR r | wordSizeInBits == 64 = fmap (fromIntegral :: Word64 -> Word) . uniformWord64R ((fromIntegral :: Word -> Word64) r) | otherwise = fmap (fromIntegral :: Word32 -> Word) . uniformWord32R ((fromIntegral :: Word -> Word32) r) {-# INLINE uniformWordR #-} instance Uniform Word8 where uniformM = uniformWord8 {-# INLINE uniformM #-} instance UniformRange Word8 where uniformRM = unbiasedWordMult32RM {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Word16 where uniformM = uniformWord16 {-# INLINE uniformM #-} instance UniformRange Word16 where uniformRM = unbiasedWordMult32RM {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Word32 where uniformM = uniformWord32 {-# INLINE uniformM #-} instance UniformRange Word32 where uniformRM = unbiasedWordMult32RM {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform Word64 where uniformM = uniformWord64 {-# INLINE uniformM #-} instance UniformRange Word64 where uniformRM = unsignedBitmaskWithRejectionRM {-# INLINE uniformRM #-} isInRange = isInRangeOrd #if __GLASGOW_HASKELL__ >= 802 instance Uniform CBool where uniformM = fmap CBool . uniformM {-# INLINE uniformM #-} instance UniformRange CBool where uniformRM (CBool b, CBool t) = fmap CBool . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd #endif instance Uniform CChar where uniformM = fmap CChar . uniformM {-# INLINE uniformM #-} instance UniformRange CChar where uniformRM (CChar b, CChar t) = fmap CChar . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CSChar where uniformM = fmap CSChar . uniformM {-# INLINE uniformM #-} instance UniformRange CSChar where uniformRM (CSChar b, CSChar t) = fmap CSChar . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CUChar where uniformM = fmap CUChar . uniformM {-# INLINE uniformM #-} instance UniformRange CUChar where uniformRM (CUChar b, CUChar t) = fmap CUChar . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CShort where uniformM = fmap CShort . uniformM {-# INLINE uniformM #-} instance UniformRange CShort where uniformRM (CShort b, CShort t) = fmap CShort . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CUShort where uniformM = fmap CUShort . uniformM {-# INLINE uniformM #-} instance UniformRange CUShort where uniformRM (CUShort b, CUShort t) = fmap CUShort . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CInt where uniformM = fmap CInt . uniformM {-# INLINE uniformM #-} instance UniformRange CInt where uniformRM (CInt b, CInt t) = fmap CInt . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CUInt where uniformM = fmap CUInt . uniformM {-# INLINE uniformM #-} instance UniformRange CUInt where uniformRM (CUInt b, CUInt t) = fmap CUInt . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CLong where uniformM = fmap CLong . uniformM {-# INLINE uniformM #-} instance UniformRange CLong where uniformRM (CLong b, CLong t) = fmap CLong . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CULong where uniformM = fmap CULong . uniformM {-# INLINE uniformM #-} instance UniformRange CULong where uniformRM (CULong b, CULong t) = fmap CULong . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CPtrdiff where uniformM = fmap CPtrdiff . uniformM {-# INLINE uniformM #-} instance UniformRange CPtrdiff where uniformRM (CPtrdiff b, CPtrdiff t) = fmap CPtrdiff . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CSize where uniformM = fmap CSize . uniformM {-# INLINE uniformM #-} instance UniformRange CSize where uniformRM (CSize b, CSize t) = fmap CSize . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CWchar where uniformM = fmap CWchar . uniformM {-# INLINE uniformM #-} instance UniformRange CWchar where uniformRM (CWchar b, CWchar t) = fmap CWchar . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CSigAtomic where uniformM = fmap CSigAtomic . uniformM {-# INLINE uniformM #-} instance UniformRange CSigAtomic where uniformRM (CSigAtomic b, CSigAtomic t) = fmap CSigAtomic . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CLLong where uniformM = fmap CLLong . uniformM {-# INLINE uniformM #-} instance UniformRange CLLong where uniformRM (CLLong b, CLLong t) = fmap CLLong . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CULLong where uniformM = fmap CULLong . uniformM {-# INLINE uniformM #-} instance UniformRange CULLong where uniformRM (CULLong b, CULLong t) = fmap CULLong . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CIntPtr where uniformM = fmap CIntPtr . uniformM {-# INLINE uniformM #-} instance UniformRange CIntPtr where uniformRM (CIntPtr b, CIntPtr t) = fmap CIntPtr . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CUIntPtr where uniformM = fmap CUIntPtr . uniformM {-# INLINE uniformM #-} instance UniformRange CUIntPtr where uniformRM (CUIntPtr b, CUIntPtr t) = fmap CUIntPtr . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CIntMax where uniformM = fmap CIntMax . uniformM {-# INLINE uniformM #-} instance UniformRange CIntMax where uniformRM (CIntMax b, CIntMax t) = fmap CIntMax . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform CUIntMax where uniformM = fmap CUIntMax . uniformM {-# INLINE uniformM #-} instance UniformRange CUIntMax where uniformRM (CUIntMax b, CUIntMax t) = fmap CUIntMax . uniformRM (b, t) {-# INLINE uniformRM #-} isInRange = isInRangeOrd -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange CFloat where uniformRM (CFloat l, CFloat h) = fmap CFloat . uniformRM (l, h) {-# INLINE uniformRM #-} isInRange = isInRangeOrd -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange CDouble where uniformRM (CDouble l, CDouble h) = fmap CDouble . uniformRM (l, h) {-# INLINE uniformRM #-} isInRange = isInRangeOrd -- The `chr#` and `ord#` are the prim functions that will be called, regardless of which -- way you gonna do the `Char` conversion, so it is better to call them directly and -- bypass all the hoops. Also because `intToChar` and `charToInt` are internal functions -- and are called on valid character ranges it is impossible to generate an invalid -- `Char`, therefore it is totally fine to omit all the unnecessary checks involved in -- other paths of conversion. word32ToChar :: Word32 -> Char #if !defined(__MHS__) #if __GLASGOW_HASKELL__ < 902 word32ToChar (W32# w#) = C# (chr# (word2Int# w#)) #else word32ToChar (W32# w#) = C# (chr# (word2Int# (word32ToWord# w#))) #endif #else /* !defined(__MHS__) */ word32ToChar = toEnum . fromIntegral #endif /* !defined(__MHS__) */ {-# INLINE word32ToChar #-} charToWord32 :: Char -> Word32 #if !defined(__MHS__) #if __GLASGOW_HASKELL__ < 902 charToWord32 (C# c#) = W32# (int2Word# (ord# c#)) #else charToWord32 (C# c#) = W32# (wordToWord32# (int2Word# (ord# c#))) #endif #else /* !defined(__MHS__) */ charToWord32 = fromIntegral . fromEnum #endif /* !defined(__MHS__) */ {-# INLINE charToWord32 #-} instance Uniform Char where uniformM g = word32ToChar <$> unbiasedWordMult32 (charToWord32 maxBound) g {-# INLINE uniformM #-} instance UniformRange Char where uniformRM (l, h) g = word32ToChar <$> unbiasedWordMult32RM (charToWord32 l, charToWord32 h) g {-# INLINE uniformRM #-} isInRange = isInRangeOrd instance Uniform () where uniformM = const $ pure () {-# INLINE uniformM #-} instance UniformRange () where uniformRM = const $ const $ pure () {-# INLINE uniformRM #-} instance Uniform Bool where uniformM = fmap wordToBool . uniformWord8 where wordToBool w = (w .&. 1) /= 0 {-# INLINE wordToBool #-} {-# INLINE uniformM #-} instance UniformRange Bool where uniformRM (False, False) _g = return False uniformRM (True, True) _g = return True uniformRM _ g = uniformM g {-# INLINE uniformRM #-} isInRange = isInRangeOrd #if !defined(__MHS__) instance (Finite a, Uniform a) => Uniform (Maybe a) instance (Finite a, Uniform a, Finite b, Uniform b) => Uniform (Either a b) #endif /* !defined(__MHS__) */ -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange Double where uniformRM (l, h) g | l == h = return l | isInfinite l || isInfinite h = -- Optimisation exploiting absorption: -- (+Infinity) + (-Infinity) = NaN -- (-Infinity) + (+Infinity) = NaN -- (+Infinity) + _ = +Infinity -- (-Infinity) + _ = -Infinity -- _ + (+Infinity) = +Infinity -- _ + (-Infinity) = -Infinity return $! h + l | otherwise = do w64 <- uniformWord64 g pure $! scaleFloating l h w64 {-# INLINE uniformRM #-} isInRange = isInRangeOrd -- | Generates uniformly distributed 'Double' in the range \([0, 1]\). -- Numbers are generated by generating uniform 'Word64' and dividing -- it by \(2^{64}\). It's used to implement 'UniformRange' instance for -- 'Double'. -- -- @since 1.2.0 uniformDouble01M :: forall g m. StatefulGen g m => g -> m Double uniformDouble01M g = do w64 <- uniformWord64 g return $ fromIntegral w64 / m where m = fromIntegral (maxBound :: Word64) :: Double {-# INLINE uniformDouble01M #-} -- | Generates uniformly distributed 'Double' in the range -- \((0, 1]\). Number is generated as \(2^{-64}/2+\operatorname{uniformDouble01M}\). -- Constant is 1\/2 of smallest nonzero value which could be generated -- by 'uniformDouble01M'. -- -- @since 1.2.0 uniformDoublePositive01M :: forall g m. StatefulGen g m => g -> m Double uniformDoublePositive01M g = (+ d) <$> uniformDouble01M g where -- We add small constant to shift generated value from zero. It's -- selected as 1/2 of smallest possible nonzero value d = 2.710505431213761e-20 -- 2**(-65) {-# INLINE uniformDoublePositive01M #-} -- | See [Floating point number caveats](System-Random-Stateful.html#fpcaveats). instance UniformRange Float where uniformRM (l, h) g | l == h = return l | isInfinite l || isInfinite h = -- Optimisation exploiting absorption: -- (+Infinity) + (-Infinity) = NaN -- (-Infinity) + (+Infinity) = NaN -- (+Infinity) + _ = +Infinity -- (-Infinity) + _ = -Infinity -- _ + (+Infinity) = +Infinity -- _ + (-Infinity) = -Infinity return $! h + l | otherwise = do w32 <- uniformWord32 g pure $! scaleFloating l h w32 {-# INLINE uniformRM #-} isInRange = isInRangeOrd -- | This is the function that is used to scale a floating point value from random word range to -- the custom @[low, high]@ range. -- -- @since 1.3.0 scaleFloating :: forall a w. (RealFloat a, Integral w, Bounded w, FiniteBits w) => -- | Low a -> -- | High a -> -- | Uniformly distributed unsigned integral value that will be used for converting to a floating -- point value and subsequent scaling to the specified range w -> a scaleFloating l h w = if isInfinite diff then let !x = fromIntegral w / m !y = x * l + (1 - x) * h in max (min y (max l h)) (min l h) else let !topMostBit = finiteBitSize w - 1 !x = fromIntegral (clearBit w topMostBit) / m in if testBit w topMostBit then l + diff * x else h + negate diff * x where !diff = h - l !m = fromIntegral (maxBound :: w) :: a {-# INLINE scaleFloating #-} -- | Generates uniformly distributed 'Float' in the range \([0, 1]\). -- Numbers are generated by generating uniform 'Word32' and dividing -- it by \(2^{32}\). It's used to implement 'UniformRange' instance for 'Float'. -- -- @since 1.2.0 uniformFloat01M :: forall g m. StatefulGen g m => g -> m Float uniformFloat01M g = do w32 <- uniformWord32 g return $ fromIntegral w32 / m where m = fromIntegral (maxBound :: Word32) :: Float {-# INLINE uniformFloat01M #-} -- | Generates uniformly distributed 'Float' in the range -- \((0, 1]\). Number is generated as \(2^{-32}/2+\operatorname{uniformFloat01M}\). -- Constant is 1\/2 of smallest nonzero value which could be generated -- by 'uniformFloat01M'. -- -- @since 1.2.0 uniformFloatPositive01M :: forall g m. StatefulGen g m => g -> m Float uniformFloatPositive01M g = (+ d) <$> uniformFloat01M g where -- See uniformDoublePositive01M d = 1.1641532182693481e-10 -- 2**(-33) {-# INLINE uniformFloatPositive01M #-} -- | Generates uniformly distributed 'Enum'. -- One can use it to define a 'Uniform' instance: -- -- > data Colors = Red | Green | Blue deriving (Enum, Bounded) -- > instance Uniform Colors where uniformM = uniformEnumM -- -- @since 1.3.0 uniformEnumM :: forall a g m. (Enum a, Bounded a, StatefulGen g m) => g -> m a uniformEnumM g = toEnum <$> uniformRM (fromEnum (minBound :: a), fromEnum (maxBound :: a)) g {-# INLINE uniformEnumM #-} -- | Generates uniformly distributed 'Enum' in the given range. -- One can use it to define a 'UniformRange' instance: -- -- > data Colors = Red | Green | Blue deriving (Enum) -- > instance UniformRange Colors where -- > uniformRM = uniformEnumRM -- > inInRange (lo, hi) x = isInRange (fromEnum lo, fromEnum hi) (fromEnum x) -- -- @since 1.3.0 uniformEnumRM :: forall a g m. (Enum a, StatefulGen g m) => (a, a) -> g -> m a uniformEnumRM (l, h) g = toEnum <$> uniformRM (fromEnum l, fromEnum h) g {-# INLINE uniformEnumRM #-} -- The two integer functions below take an [inclusive,inclusive] range. randomIvalIntegral :: (RandomGen g, Integral a) => (a, a) -> g -> (a, g) randomIvalIntegral (l, h) = randomIvalInteger (toInteger l, toInteger h) {-# SPECIALIZE randomIvalInteger :: Num a => (Integer, Integer) -> StdGen -> (a, StdGen) #-} randomIvalInteger :: (RandomGen g, Num a) => (Integer, Integer) -> g -> (a, g) randomIvalInteger (l, h) rng | l > h = randomIvalInteger (h, l) rng | otherwise = case f 1 0 rng of (v, rng') -> (fromInteger (l + v `mod` k), rng') where (genlo, genhi) = genRange rng b = fromIntegral genhi - fromIntegral genlo + 1 :: Integer -- Probabilities of the most likely and least likely result -- will differ at most by a factor of (1 +- 1/q). Assuming the RandomGen -- is uniform, of course -- On average, log q / log b more pseudo-random values will be generated -- than the minimum q = 1000 :: Integer k = h - l + 1 magtgt = k * q -- generate pseudo-random values until we exceed the target magnitude f mag v g | mag >= magtgt = (v, g) | otherwise = v' `seq` f (mag * b) v' g' where (x, g') = next g v' = v * b + (fromIntegral x - fromIntegral genlo) -- | Generate an integral in the range @[l, h]@ if @l <= h@ and @[h, l]@ -- otherwise. uniformIntegralM :: forall a g m. (Bits a, Integral a, StatefulGen g m) => (a, a) -> g -> m a uniformIntegralM (l, h) gen = case l `compare` h of LT -> do let limit = h - l bounded <- case toIntegralSized limit :: Maybe Word64 of Just limitAsWord64 -> -- Optimisation: if 'limit' fits into 'Word64', generate a bounded -- 'Word64' and then convert to 'Integer' fromIntegral <$> unsignedBitmaskWithRejectionM uniformWord64 limitAsWord64 gen Nothing -> boundedExclusiveIntegralM (limit + 1) gen return $ l + bounded GT -> uniformIntegralM (h, l) gen EQ -> pure l {-# INLINEABLE uniformIntegralM #-} {-# SPECIALIZE uniformIntegralM :: StatefulGen g m => (Integer, Integer) -> g -> m Integer #-} {-# SPECIALIZE uniformIntegralM :: StatefulGen g m => (Natural, Natural) -> g -> m Natural #-} -- | Generate an integral in the range @[0, s)@ using a variant of Lemire's -- multiplication method. -- -- Daniel Lemire. 2019. Fast Random Integer Generation in an Interval. In ACM -- Transactions on Modeling and Computer Simulation -- https://doi.org/10.1145/3230636 -- -- PRECONDITION (unchecked): s > 0 boundedExclusiveIntegralM :: forall a g m. (Bits a, Integral a, StatefulGen g m) => a -> g -> m a boundedExclusiveIntegralM s gen = go where n = integralWordSize s -- We renamed 'L' from the paper to 'k' here because 'L' is not a valid -- variable name in Haskell and 'l' is already used in the algorithm. k = wordSizeInBits * n twoToK = (1 :: a) `shiftL` k modTwoToKMask = twoToK - 1 t = (twoToK - s) `rem` s -- `rem`, instead of `mod` because `twoToK >= s` is guaranteed go :: (Bits a, Integral a, StatefulGen g m) => m a go = do x <- uniformIntegralWords n gen let m = x * s -- m .&. modTwoToKMask == m `mod` twoToK let l = m .&. modTwoToKMask if l < t then go -- m `shiftR` k == m `quot` twoToK else return $ m `shiftR` k {-# INLINE boundedExclusiveIntegralM #-} -- | boundedByPowerOf2ExclusiveIntegralM s ~ boundedExclusiveIntegralM (bit s) boundedByPowerOf2ExclusiveIntegralM :: forall a g m. (Bits a, Integral a, StatefulGen g m) => Int -> g -> m a boundedByPowerOf2ExclusiveIntegralM s gen = do let n = (s + wordSizeInBits - 1) `quot` wordSizeInBits x <- uniformIntegralWords n gen return $ x .&. (bit s - 1) {-# INLINE boundedByPowerOf2ExclusiveIntegralM #-} -- | @integralWordSize i@ returns that least @w@ such that -- @i <= WORD_SIZE_IN_BITS^w@. integralWordSize :: (Bits a, Num a) => a -> Int integralWordSize = go 0 where go !acc i | i == 0 = acc | otherwise = go (acc + 1) (i `shiftR` wordSizeInBits) {-# INLINE integralWordSize #-} -- | @uniformIntegralWords n@ is a uniformly pseudo-random integral in the range -- @[0, WORD_SIZE_IN_BITS^n)@. uniformIntegralWords :: forall a g m. (Bits a, Integral a, StatefulGen g m) => Int -> g -> m a uniformIntegralWords n gen = go 0 n where go !acc i | i == 0 = return acc | otherwise = do (w :: Word) <- uniformM gen go ((acc `shiftL` wordSizeInBits) .|. fromIntegral w) (i - 1) {-# INLINE uniformIntegralWords #-} -- | Uniformly generate an 'Integral' in an inclusive-inclusive range. -- -- Only use for integrals size less than or equal to that of 'Word32'. unbiasedWordMult32RM :: forall a g m. (Integral a, StatefulGen g m) => (a, a) -> g -> m a unbiasedWordMult32RM (b, t) g | b <= t = (+ b) . fromIntegral <$> unbiasedWordMult32 (fromIntegral (t - b)) g | otherwise = (+ t) . fromIntegral <$> unbiasedWordMult32 (fromIntegral (b - t)) g {-# INLINE unbiasedWordMult32RM #-} -- | Uniformly generate Word32 in @[0, s]@. unbiasedWordMult32 :: forall g m. StatefulGen g m => Word32 -> g -> m Word32 unbiasedWordMult32 s g | s == maxBound = uniformWord32 g | otherwise = unbiasedWordMult32Exclusive (s + 1) g {-# INLINE unbiasedWordMult32 #-} -- | See [Lemire's paper](https://arxiv.org/pdf/1805.10941.pdf), -- [O\'Neill's -- blogpost](https://www.pcg-random.org/posts/bounded-rands.html) and -- more directly [O\'Neill's github -- repo](https://github.com/imneme/bounded-rands/blob/3d71f53c975b1e5b29f2f3b05a74e26dab9c3d84/bounded32.cpp#L234). -- N.B. The range is [0,r) **not** [0,r]. unbiasedWordMult32Exclusive :: forall g m. StatefulGen g m => Word32 -> g -> m Word32 unbiasedWordMult32Exclusive r g = go where t :: Word32 t = (-r) `mod` r -- Calculates 2^32 `mod` r!!! go :: StatefulGen g m => m Word32 go = do x <- uniformWord32 g let m :: Word64 m = fromIntegral x * fromIntegral r l :: Word32 l = fromIntegral m if l >= t then return (fromIntegral $ m `shiftR` 32) else go {-# INLINE unbiasedWordMult32Exclusive #-} -- | This only works for unsigned integrals unsignedBitmaskWithRejectionRM :: forall a g m. (FiniteBits a, Num a, Ord a, Uniform a, StatefulGen g m) => (a, a) -> g -> m a unsignedBitmaskWithRejectionRM (bottom, top) gen | bottom == top = pure top | otherwise = (b +) <$> unsignedBitmaskWithRejectionM uniformM r gen where (b, r) = if bottom > top then (top, bottom - top) else (bottom, top - bottom) {-# INLINE unsignedBitmaskWithRejectionRM #-} -- | This works for signed integrals by explicit conversion to unsigned and abusing -- overflow. It uses `unsignedBitmaskWithRejectionM`, therefore it requires functions that -- take the value to unsigned and back. signedBitmaskWithRejectionRM :: forall a b g m. (Num a, Num b, Ord b, Ord a, FiniteBits a, StatefulGen g m, Uniform a) => -- | Convert signed to unsigned. @a@ and @b@ must be of the same size. (b -> a) -> -- | Convert unsigned to signed. @a@ and @b@ must be of the same size. (a -> b) -> -- | Range. (b, b) -> -- | Generator. g -> m b signedBitmaskWithRejectionRM toUnsigned fromUnsigned (bottom, top) gen | bottom == top = pure top | otherwise = -- This works in all cases, see Appendix 1 at the end of the file. (b +) . fromUnsigned <$> unsignedBitmaskWithRejectionM uniformM r gen where (b, r) = if bottom > top then (top, toUnsigned bottom - toUnsigned top) else (bottom, toUnsigned top - toUnsigned bottom) {-# INLINE signedBitmaskWithRejectionRM #-} -- | Detailed explanation about the algorithm employed here can be found in this post: -- http://web.archive.org/web/20200520071940/https://www.pcg-random.org/posts/bounded-rands.html unsignedBitmaskWithRejectionM :: forall a g m. (Ord a, FiniteBits a, Num a, StatefulGen g m) => (g -> m a) -> a -> g -> m a unsignedBitmaskWithRejectionM genUniformM range gen = go where mask :: a mask = complement zeroBits `shiftR` countLeadingZeros (range .|. 1) go = do x <- genUniformM gen let x' = x .&. mask if x' > range then go else pure x' {-# INLINE unsignedBitmaskWithRejectionM #-} ------------------------------------------------------------------------------- -- 'Uniform' instances for tuples ------------------------------------------------------------------------------- instance (Uniform a, Uniform b) => Uniform (a, b) where uniformM g = (,) <$> uniformM g <*> uniformM g {-# INLINE uniformM #-} instance (Uniform a, Uniform b, Uniform c) => Uniform (a, b, c) where uniformM g = (,,) <$> uniformM g <*> uniformM g <*> uniformM g {-# INLINE uniformM #-} instance (Uniform a, Uniform b, Uniform c, Uniform d) => Uniform (a, b, c, d) where uniformM g = (,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g {-# INLINE uniformM #-} instance (Uniform a, Uniform b, Uniform c, Uniform d, Uniform e) => Uniform (a, b, c, d, e) where uniformM g = (,,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g {-# INLINE uniformM #-} instance (Uniform a, Uniform b, Uniform c, Uniform d, Uniform e, Uniform f) => Uniform (a, b, c, d, e, f) where uniformM g = (,,,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g {-# INLINE uniformM #-} instance (Uniform a, Uniform b, Uniform c, Uniform d, Uniform e, Uniform f, Uniform g) => Uniform (a, b, c, d, e, f, g) where uniformM g = (,,,,,,) <$> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g <*> uniformM g {-# INLINE uniformM #-} instance (UniformRange a, UniformRange b) => UniformRange (a, b) instance (UniformRange a, UniformRange b, UniformRange c) => UniformRange (a, b, c) instance (UniformRange a, UniformRange b, UniformRange c, UniformRange d) => UniformRange (a, b, c, d) instance (UniformRange a, UniformRange b, UniformRange c, UniformRange d, UniformRange e) => UniformRange (a, b, c, d, e) instance (UniformRange a, UniformRange b, UniformRange c, UniformRange d, UniformRange e, UniformRange f) => UniformRange (a, b, c, d, e, f) instance ( UniformRange a , UniformRange b , UniformRange c , UniformRange d , UniformRange e , UniformRange f , UniformRange g ) => UniformRange (a, b, c, d, e, f, g) -- | Wraps an 'IORef' that holds a pure pseudo-random number generator. All -- operations are performed atomically. -- -- * 'AtomicGenM' is safe in the presence of exceptions and concurrency. -- * 'AtomicGenM' is the slowest of the monadic adapters due to the overhead -- of its atomic operations. -- -- @since 1.2.0 newtype AtomicGenM g = AtomicGenM {unAtomicGenM :: IORef g} -- | Frozen version of mutable `AtomicGenM` generator -- -- @since 1.2.0 newtype AtomicGen g = AtomicGen {unAtomicGen :: g} deriving (Eq, Ord, Show, RandomGen, SplitGen, Storable, NFData) -- | Creates a new 'AtomicGenM'. -- -- @since 1.2.0 newAtomicGenM :: MonadIO m => g -> m (AtomicGenM g) newAtomicGenM = fmap AtomicGenM . liftIO . newIORef -- | Global mutable standard pseudo-random number generator. This is the same -- generator that was historically used by `randomIO` and `randomRIO` functions. -- -- >>> import Control.Monad (replicateM) -- >>> replicateM 10 (uniformRM ('a', 'z') globalStdGen) -- "..." -- -- @since 1.2.1 globalStdGen :: AtomicGenM StdGen globalStdGen = AtomicGenM theStdGen instance (RandomGen g, MonadIO m) => StatefulGen (AtomicGenM g) m where uniformWord32R r = applyAtomicGen (genWord32R r) {-# INLINE uniformWord32R #-} uniformWord64R r = applyAtomicGen (genWord64R r) {-# INLINE uniformWord64R #-} uniformWord8 = applyAtomicGen genWord8 {-# INLINE uniformWord8 #-} uniformWord16 = applyAtomicGen genWord16 {-# INLINE uniformWord16 #-} uniformWord32 = applyAtomicGen genWord32 {-# INLINE uniformWord32 #-} uniformWord64 = applyAtomicGen genWord64 {-# INLINE uniformWord64 #-} #if !defined(__MHS__) instance (RandomGen g, MonadIO m) => FrozenGen (AtomicGen g) m where type MutableGen (AtomicGen g) m = AtomicGenM g #else /* __MHS__ */ instance (RandomGen g, MonadIO m) => FrozenGen (AtomicGen g) m (AtomicGenM g) where #endif /* __MHS__ */ freezeGen = fmap AtomicGen . liftIO . readIORef . unAtomicGenM modifyGen (AtomicGenM ioRef) f = liftIO $ atomicModifyIORefHS ioRef $ \g -> case f (AtomicGen g) of (a, AtomicGen g') -> (g', a) {-# INLINE modifyGen #-} #if !defined(__MHS__) instance (RandomGen g, MonadIO m) => ThawedGen (AtomicGen g) m where #else /* __MHS__ */ instance (RandomGen g, MonadIO m) => ThawedGen (AtomicGen g) m (AtomicGenM g) where #endif /* __MHS__ */ thawGen (AtomicGen g) = newAtomicGenM g -- | Atomically applies a pure operation to the wrapped pseudo-random number -- generator. -- -- ====__Examples__ -- -- >>> import System.Random.Stateful -- >>> let pureGen = mkStdGen 137 -- >>> g <- newAtomicGenM pureGen -- >>> applyAtomicGen random g :: IO Int -- 7879794327570578227 -- -- @since 1.2.0 applyAtomicGen :: MonadIO m => (g -> (a, g)) -> AtomicGenM g -> m a applyAtomicGen op (AtomicGenM gVar) = liftIO $ atomicModifyIORefHS gVar $ \g -> case op g of (a, g') -> (g', a) {-# INLINE applyAtomicGen #-} -- HalfStrict version of atomicModifyIORef, i.e. strict in the modifcation of the contents -- of the IORef, but not in the result produced. atomicModifyIORefHS :: IORef a -> (a -> (a, b)) -> IO b atomicModifyIORefHS ref f = do #if __GLASGOW_HASKELL__ >= 808 (_old, (_new, res)) <- atomicModifyIORef2Lazy ref $ \old -> case f old of r@(!_new, _res) -> r pure res #else atomicModifyIORef ref $ \old -> case f old of r@(!_new, _res) -> r #endif {-# INLINE atomicModifyIORefHS #-} -- Appendix 1. -- -- @top@ and @bottom@ are signed integers of bit width @n@. @toUnsigned@ -- converts a signed integer to an unsigned number of the same bit width @n@. -- -- range = toUnsigned top - toUnsigned bottom -- -- This works out correctly thanks to modular arithmetic. Conceptually, -- -- toUnsigned x | x >= 0 = x -- toUnsigned x | x < 0 = 2^n + x -- -- The following combinations are possible: -- -- 1. @bottom >= 0@ and @top >= 0@ -- 2. @bottom < 0@ and @top >= 0@ -- 3. @bottom < 0@ and @top < 0@ -- -- Note that @bottom >= 0@ and @top < 0@ is impossible because of the -- invariant @bottom < top@. -- -- For any signed integer @i@ of width @n@, we have: -- -- -2^(n-1) <= i <= 2^(n-1) - 1 -- -- Considering each combination in turn, we have -- -- 1. @bottom >= 0@ and @top >= 0@ -- -- range = (toUnsigned top - toUnsigned bottom) `mod` 2^n -- --^ top >= 0, so toUnsigned top == top -- --^ bottom >= 0, so toUnsigned bottom == bottom -- = (top - bottom) `mod` 2^n -- --^ top <= 2^(n-1) - 1 and bottom >= 0 -- --^ top - bottom <= 2^(n-1) - 1 -- --^ 0 < top - bottom <= 2^(n-1) - 1 -- = top - bottom -- -- 2. @bottom < 0@ and @top >= 0@ -- -- range = (toUnsigned top - toUnsigned bottom) `mod` 2^n -- --^ top >= 0, so toUnsigned top == top -- --^ bottom < 0, so toUnsigned bottom == 2^n + bottom -- = (top - (2^n + bottom)) `mod` 2^n -- --^ summand -2^n cancels out in calculation modulo 2^n -- = (top - bottom) `mod` 2^n -- --^ top <= 2^(n-1) - 1 and bottom >= -2^(n-1) -- --^ top - bottom <= (2^(n-1) - 1) - (-2^(n-1)) = 2^n - 1 -- --^ 0 < top - bottom <= 2^n - 1 -- = top - bottom -- -- 3. @bottom < 0@ and @top < 0@ -- -- range = (toUnsigned top - toUnsigned bottom) `mod` 2^n -- --^ top < 0, so toUnsigned top == 2^n + top -- --^ bottom < 0, so toUnsigned bottom == 2^n + bottom -- = ((2^n + top) - (2^n + bottom)) `mod` 2^n -- --^ summand 2^n cancels out in calculation modulo 2^n -- = (top - bottom) `mod` 2^n -- --^ top <= -1 -- --^ bottom >= -2^(n-1) -- --^ top - bottom <= -1 - (-2^(n-1)) = 2^(n-1) - 1 -- --^ 0 < top - bottom <= 2^(n-1) - 1 -- = top - bottom