úÎ|î     &A trivial implementation of range sets(c) Oleg Grenrus 2014MIToleg.grenrus@iki.fi experimental#non-portable (tested with GHC only) Safe-InferredJInternally set is represented as sorted list of distinct inclusive ranges.O(n+m). See .O(1). Is this the empty set?O(n)(. The number of the elements in the set.O(n). Is the element in the set?O(n) . Is the element not in the set?O(1). The empty set.O(1). The full set.O(1). Create a singleton set. O(1). Create a continuos range set. O(n). Insert an element in a set. O(n)$. Insert a continuos range in a set. $/O(n). Delete an element from a set. +/O(n). Delete a continuos range from a set.O(n*m). The union of two sets.O(n*m). Difference of two sets.O(n*m). The intersection of two sets.O(n). Complement of the set.O(1). The minimal element of a set.O(n). The maximal element of a set.O(n*r)). Convert the set to a list of elements. r is the size of longest range.O(n*r)). Convert the set to a list of elements. r is the size of longest range.O(n^2)'. Create a set from a list of elements.O(1)+. Convert the set to a list of range pairs.O(n^2)*. Create a set from a list of range pairs.            range-set-list-0.1.0.0Data.RangeSet.ListRSet\\nullsizemember notMemberemptyfull singletonsingletonRangeinsert insertRangedelete deleteRangeunion difference intersection complementfindMinfindMaxelemstoListfromList toRangeList fromRangeList insertRange' deleteRange' $fMonoidRSet $fShowRSet