-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Generalized bananas, lenses and barbed wire -- -- Recursion operators, see "Generalized bananas, lenses and barbed wire" -- by Erik Meijer, Maarten Fokkinga and Ross Paterson. @package recursion-schemes @version 5.1 -- | Base Functors for standard types not already expressed as a fixed -- point. module Data.Functor.Base -- | Base Functor for NonEmpty data NonEmptyF a b NonEmptyF :: a -> Maybe b -> NonEmptyF a b [head] :: NonEmptyF a b -> a [tail] :: NonEmptyF a b -> Maybe b instance GHC.Generics.Generic1 (Data.Functor.Base.NonEmptyF a) instance GHC.Generics.Generic (Data.Functor.Base.NonEmptyF a b) instance (GHC.Read.Read a, GHC.Read.Read b) => GHC.Read.Read (Data.Functor.Base.NonEmptyF a b) instance (GHC.Show.Show a, GHC.Show.Show b) => GHC.Show.Show (Data.Functor.Base.NonEmptyF a b) instance (GHC.Classes.Ord a, GHC.Classes.Ord b) => GHC.Classes.Ord (Data.Functor.Base.NonEmptyF a b) instance (GHC.Classes.Eq a, GHC.Classes.Eq b) => GHC.Classes.Eq (Data.Functor.Base.NonEmptyF a b) instance Data.Functor.Classes.Eq2 Data.Functor.Base.NonEmptyF instance GHC.Classes.Eq a => Data.Functor.Classes.Eq1 (Data.Functor.Base.NonEmptyF a) instance Data.Functor.Classes.Ord2 Data.Functor.Base.NonEmptyF instance GHC.Classes.Ord a => Data.Functor.Classes.Ord1 (Data.Functor.Base.NonEmptyF a) instance GHC.Show.Show a => Data.Functor.Classes.Show1 (Data.Functor.Base.NonEmptyF a) instance Data.Functor.Classes.Show2 Data.Functor.Base.NonEmptyF instance Data.Functor.Classes.Read2 Data.Functor.Base.NonEmptyF instance GHC.Read.Read a => Data.Functor.Classes.Read1 (Data.Functor.Base.NonEmptyF a) instance GHC.Base.Functor (Data.Functor.Base.NonEmptyF a) instance Data.Foldable.Foldable (Data.Functor.Base.NonEmptyF a) instance Data.Traversable.Traversable (Data.Functor.Base.NonEmptyF a) instance Data.Bifunctor.Bifunctor Data.Functor.Base.NonEmptyF instance Data.Bifoldable.Bifoldable Data.Functor.Base.NonEmptyF instance Data.Bitraversable.Bitraversable Data.Functor.Base.NonEmptyF module Data.Functor.Foldable -- | Base functor of []. data ListF a b Nil :: ListF a b Cons :: a -> b -> ListF a b newtype Fix f Fix :: (f (Fix f)) -> Fix f unfix :: Fix f -> f (Fix f) newtype Mu f Mu :: (forall a. (f a -> a) -> a) -> Mu f -- | A specialized, faster version of hoist for Mu. hoistMu :: (forall a. f a -> g a) -> Mu f -> Mu g data Nu f [Nu] :: (a -> f a) -> a -> Nu f -- | A specialized, faster version of hoist for Nu. hoistNu :: (forall a. f a -> g a) -> Nu f -> Nu g class Functor (Base t) => Recursive t project :: Recursive t => t -> Base t t cata :: Recursive t => (Base t a -> a) -> t -> a para :: Recursive t => (Base t (t, a) -> a) -> t -> a gpara :: (Recursive t, Corecursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> (Base t (EnvT t w a) -> a) -> t -> a -- | Fokkinga's prepromorphism prepro :: (Recursive t, Corecursive t) => (forall b. Base t b -> Base t b) -> (Base t a -> a) -> t -> a gprepro :: (Recursive t, Corecursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> (forall c. Base t c -> Base t c) -> (Base t (w a) -> a) -> t -> a gapo :: Corecursive t => (b -> Base t b) -> (a -> Base t (Either b a)) -> a -> t -- | A generalized catamorphism gcata :: (Recursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> (Base t (w a) -> a) -> t -> a zygo :: Recursive t => (Base t b -> b) -> (Base t (b, a) -> a) -> t -> a gzygo :: (Recursive t, Comonad w) => (Base t b -> b) -> (forall c. Base t (w c) -> w (Base t c)) -> (Base t (EnvT b w a) -> a) -> t -> a -- | Course-of-value iteration histo :: Recursive t => (Base t (Cofree (Base t) a) -> a) -> t -> a ghisto :: (Recursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> (Base t (CofreeT (Base t) w a) -> a) -> t -> a futu :: Corecursive t => (a -> Base t (Free (Base t) a)) -> a -> t gfutu :: (Corecursive t, Functor m, Monad m) => (forall b. m (Base t b) -> Base t (m b)) -> (a -> Base t (FreeT (Base t) m a)) -> a -> t chrono :: Functor f => (f (Cofree f b) -> b) -> (a -> f (Free f a)) -> (a -> b) gchrono :: (Functor f, Functor w, Functor m, Comonad w, Monad m) => (forall c. f (w c) -> w (f c)) -> (forall c. m (f c) -> f (m c)) -> (f (CofreeT f w b) -> b) -> (a -> f (FreeT f m a)) -> (a -> b) distCata :: Functor f => f (Identity a) -> Identity (f a) distPara :: Corecursive t => Base t (t, a) -> (t, Base t a) distParaT :: (Corecursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> Base t (EnvT t w a) -> EnvT t w (Base t a) distZygo :: Functor f => (f b -> b) -> (f (b, a) -> (b, f a)) distZygoT :: (Functor f, Comonad w) => (f b -> b) -> (forall c. f (w c) -> w (f c)) -> f (EnvT b w a) -> EnvT b w (f a) distHisto :: Functor f => f (Cofree f a) -> Cofree f (f a) distGHisto :: (Functor f, Functor h) => (forall b. f (h b) -> h (f b)) -> f (CofreeT f h a) -> CofreeT f h (f a) distFutu :: Functor f => Free f (f a) -> f (Free f a) distGFutu :: (Functor f, Functor h) => (forall b. h (f b) -> f (h b)) -> FreeT f h (f a) -> f (FreeT f h a) class Functor (Base t) => Corecursive t embed :: Corecursive t => Base t t -> t ana :: Corecursive t => (a -> Base t a) -> a -> t apo :: Corecursive t => (a -> Base t (Either t a)) -> a -> t -- | Fokkinga's postpromorphism postpro :: (Corecursive t, Recursive t) => (forall b. Base t b -> Base t b) -> (a -> Base t a) -> a -> t -- | A generalized postpromorphism gpostpro :: (Corecursive t, Recursive t, Monad m) => (forall b. m (Base t b) -> Base t (m b)) -> (forall c. Base t c -> Base t c) -> (a -> Base t (m a)) -> a -> t -- | A generalized anamorphism gana :: (Corecursive t, Monad m) => (forall b. m (Base t b) -> Base t (m b)) -> (a -> Base t (m a)) -> a -> t distAna :: Functor f => Identity (f a) -> f (Identity a) distApo :: Recursive t => Either t (Base t a) -> Base t (Either t a) distGApo :: Functor f => (b -> f b) -> Either b (f a) -> f (Either b a) distGApoT :: (Functor f, Functor m) => (b -> f b) -> (forall c. m (f c) -> f (m c)) -> ExceptT b m (f a) -> f (ExceptT b m a) hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b -- | A generalized hylomorphism ghylo :: (Comonad w, Functor f, Monad m) => (forall c. f (w c) -> w (f c)) -> (forall d. m (f d) -> f (m d)) -> (f (w b) -> b) -> (a -> f (m a)) -> a -> b hoist :: (Recursive s, Corecursive t) => (forall a. Base s a -> Base t a) -> s -> t refix :: (Recursive s, Corecursive t, Base s ~ Base t) => s -> t fold :: Recursive t => (Base t a -> a) -> t -> a -- | A generalized catamorphism gfold :: (Recursive t, Comonad w) => (forall b. Base t (w b) -> w (Base t b)) -> (Base t (w a) -> a) -> t -> a unfold :: Corecursive t => (a -> Base t a) -> a -> t -- | A generalized anamorphism gunfold :: (Corecursive t, Monad m) => (forall b. m (Base t b) -> Base t (m b)) -> (a -> Base t (m a)) -> a -> t refold :: Functor f => (f b -> b) -> (a -> f a) -> a -> b -- | A generalized hylomorphism grefold :: (Comonad w, Functor f, Monad m) => (forall c. f (w c) -> w (f c)) -> (forall d. m (f d) -> f (m d)) -> (f (w b) -> b) -> (a -> f (m a)) -> a -> b -- | Mendler-style iteration mcata :: (forall y. (y -> c) -> f y -> c) -> Fix f -> c -- | Mendler-style course-of-value iteration mhisto :: (forall y. (y -> c) -> (y -> f y) -> f y -> c) -> Fix f -> c -- | Elgot algebras elgot :: Functor f => (f a -> a) -> (b -> Either a (f b)) -> b -> a -- | Elgot coalgebras: -- http://comonad.com/reader/2008/elgot-coalgebras/ coelgot :: Functor f => ((a, f b) -> b) -> (a -> f a) -> a -> b -- | Zygohistomorphic prepromorphisms: -- -- A corrected and modernized version of -- http://www.haskell.org/haskellwiki/Zygohistomorphic_prepromorphisms zygoHistoPrepro :: (Corecursive t, Recursive t) => (Base t b -> b) -> (forall c. Base t c -> Base t c) -> (Base t (EnvT b (Cofree (Base t)) a) -> a) -> t -> a -- | Effectful fold. -- -- This is a type specialisation of cata. -- -- An example terminating a recursion immediately: -- --
--   >>> cataA (\alg -> case alg of { Nil -> pure (); Cons a _ -> Const [a] })  "hello"
--   Const "h"
--   
cataA :: (Recursive t) => (Base t (f a) -> f a) -> t -> f a -- | An effectful version of hoist. -- -- Properties: -- --
--   transverse sequenceA = pure
--   
-- -- Examples: -- -- The weird type of first argument allows user to decide an order of -- sequencing: -- --
--   >>> transverse (\x -> print (void x) *> sequence x) "foo" :: IO String
--   Cons 'f' ()
--   Cons 'o' ()
--   Cons 'o' ()
--   Nil
--   "foo"
--   
-- --
--   >>> transverse (\x -> sequence x <* print (void x)) "foo" :: IO String
--   Nil
--   Cons 'o' ()
--   Cons 'o' ()
--   Cons 'f' ()
--   "foo"
--   
transverse :: (Recursive s, Corecursive t, Functor f) => (forall a. Base s (f a) -> f (Base t a)) -> s -> f t instance GHC.Generics.Generic1 (Data.Functor.Foldable.ListF a) instance GHC.Generics.Generic (Data.Functor.Foldable.ListF a b) instance (GHC.Read.Read a, GHC.Read.Read b) => GHC.Read.Read (Data.Functor.Foldable.ListF a b) instance (GHC.Show.Show a, GHC.Show.Show b) => GHC.Show.Show (Data.Functor.Foldable.ListF a b) instance (GHC.Classes.Ord a, GHC.Classes.Ord b) => GHC.Classes.Ord (Data.Functor.Foldable.ListF a b) instance (GHC.Classes.Eq a, GHC.Classes.Eq b) => GHC.Classes.Eq (Data.Functor.Foldable.ListF a b) instance (Data.Typeable.Internal.Typeable f, Data.Data.Data (f (Data.Functor.Foldable.Fix f))) => Data.Data.Data (Data.Functor.Foldable.Fix f) instance GHC.Base.Functor f => Data.Functor.Foldable.Corecursive (Data.Functor.Foldable.Nu f) instance GHC.Base.Functor f => Data.Functor.Foldable.Recursive (Data.Functor.Foldable.Nu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Eq1 f) => GHC.Classes.Eq (Data.Functor.Foldable.Nu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Ord1 f) => GHC.Classes.Ord (Data.Functor.Foldable.Nu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Show1 f) => GHC.Show.Show (Data.Functor.Foldable.Nu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Read1 f) => GHC.Read.Read (Data.Functor.Foldable.Nu f) instance GHC.Base.Functor f => Data.Functor.Foldable.Recursive (Data.Functor.Foldable.Mu f) instance GHC.Base.Functor f => Data.Functor.Foldable.Corecursive (Data.Functor.Foldable.Mu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Eq1 f) => GHC.Classes.Eq (Data.Functor.Foldable.Mu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Ord1 f) => GHC.Classes.Ord (Data.Functor.Foldable.Mu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Show1 f) => GHC.Show.Show (Data.Functor.Foldable.Mu f) instance (GHC.Base.Functor f, Data.Functor.Classes.Read1 f) => GHC.Read.Read (Data.Functor.Foldable.Mu f) instance Data.Functor.Classes.Eq1 f => GHC.Classes.Eq (Data.Functor.Foldable.Fix f) instance Data.Functor.Classes.Ord1 f => GHC.Classes.Ord (Data.Functor.Foldable.Fix f) instance Data.Functor.Classes.Show1 f => GHC.Show.Show (Data.Functor.Foldable.Fix f) instance Data.Functor.Classes.Read1 f => GHC.Read.Read (Data.Functor.Foldable.Fix f) instance GHC.Base.Functor f => Data.Functor.Foldable.Recursive (Data.Functor.Foldable.Fix f) instance GHC.Base.Functor f => Data.Functor.Foldable.Corecursive (Data.Functor.Foldable.Fix f) instance Data.Functor.Classes.Eq2 Data.Functor.Foldable.ListF instance GHC.Classes.Eq a => Data.Functor.Classes.Eq1 (Data.Functor.Foldable.ListF a) instance Data.Functor.Classes.Ord2 Data.Functor.Foldable.ListF instance GHC.Classes.Ord a => Data.Functor.Classes.Ord1 (Data.Functor.Foldable.ListF a) instance GHC.Show.Show a => Data.Functor.Classes.Show1 (Data.Functor.Foldable.ListF a) instance Data.Functor.Classes.Show2 Data.Functor.Foldable.ListF instance Data.Functor.Classes.Read2 Data.Functor.Foldable.ListF instance GHC.Read.Read a => Data.Functor.Classes.Read1 (Data.Functor.Foldable.ListF a) instance GHC.Base.Functor (Data.Functor.Foldable.ListF a) instance Data.Foldable.Foldable (Data.Functor.Foldable.ListF a) instance Data.Traversable.Traversable (Data.Functor.Foldable.ListF a) instance Data.Bifunctor.Bifunctor Data.Functor.Foldable.ListF instance Data.Bifoldable.Bifoldable Data.Functor.Foldable.ListF instance Data.Bitraversable.Bitraversable Data.Functor.Foldable.ListF instance Data.Functor.Foldable.Recursive [a] instance Data.Functor.Foldable.Corecursive [a] instance Data.Functor.Foldable.Recursive (GHC.Base.NonEmpty a) instance Data.Functor.Foldable.Corecursive (GHC.Base.NonEmpty a) instance Data.Functor.Foldable.Recursive GHC.Natural.Natural instance Data.Functor.Foldable.Corecursive GHC.Natural.Natural instance GHC.Base.Functor f => Data.Functor.Foldable.Recursive (Control.Comonad.Cofree.Cofree f a) instance GHC.Base.Functor f => Data.Functor.Foldable.Corecursive (Control.Comonad.Cofree.Cofree f a) instance (GHC.Base.Functor w, GHC.Base.Functor f) => Data.Functor.Foldable.Recursive (Control.Comonad.Trans.Cofree.CofreeT f w a) instance (GHC.Base.Functor w, GHC.Base.Functor f) => Data.Functor.Foldable.Corecursive (Control.Comonad.Trans.Cofree.CofreeT f w a) instance GHC.Base.Functor f => Data.Functor.Foldable.Recursive (Control.Monad.Free.Free f a) instance GHC.Base.Functor f => Data.Functor.Foldable.Corecursive (Control.Monad.Free.Free f a) instance (GHC.Base.Functor m, GHC.Base.Functor f) => Data.Functor.Foldable.Recursive (Control.Monad.Trans.Free.FreeT f m a) instance (GHC.Base.Functor m, GHC.Base.Functor f) => Data.Functor.Foldable.Corecursive (Control.Monad.Trans.Free.FreeT f m a) instance Data.Functor.Foldable.Recursive (GHC.Base.Maybe a) instance Data.Functor.Foldable.Corecursive (GHC.Base.Maybe a) instance Data.Functor.Foldable.Recursive (Data.Either.Either a b) instance Data.Functor.Foldable.Corecursive (Data.Either.Either a b) instance GHC.Base.Functor f => Data.Functor.Foldable.Recursive (Control.Monad.Free.Church.F f a) instance GHC.Base.Functor f => Data.Functor.Foldable.Corecursive (Control.Monad.Free.Church.F f a) module Data.Functor.Foldable.TH -- | Build base functor with a sensible default configuration. -- -- e.g. -- --
--   data Expr a
--       = Lit a
--       | Add (Expr a) (Expr a)
--       | Expr a :* [Expr a]
--     deriving (Show)
--   
--   makeBaseFunctor ''Expr
--   
-- -- will create -- --
--   data ExprF a x
--       = LitF a
--       | AddF x x
--       | x :*$ [x]
--     deriving (Functor, Foldable, Traversable)
--   
--   type instance Base (Expr a) = ExprF a
--   
--   instance Recursive (Expr a) where
--       project (Lit x)   = LitF x
--       project (Add x y) = AddF x y
--       project (x :* y)  = x :*$ y
--   
--   instance Corecursive (Expr a) where
--       embed (LitF x)   = Lit x
--       embed (AddF x y) = Add x y
--       embed (x :*$ y)  = x :* y
--   
-- --
--   makeBaseFunctor = makeBaseFunctorWith baseRules
--   
-- -- Notes: -- -- makeBaseFunctor works properly only with ADTs. Existentials and -- GADTs aren't supported, as we don't try to do better than GHC's -- DeriveFunctor. makeBaseFunctor :: Name -> DecsQ -- | Build base functor with a custom configuration. makeBaseFunctorWith :: BaseRules -> Name -> DecsQ -- | Rules of renaming data names data BaseRules -- | Default BaseRules: append F or $ to data -- type, constructors and field names. baseRules :: BaseRules -- | How to name the base functor type. -- -- Default is to append F or $. baseRulesType :: Functor f => ((Name -> Name) -> f (Name -> Name)) -> BaseRules -> f BaseRules -- | How to rename the base functor type constructors. -- -- Default is to append F or $. baseRulesCon :: Functor f => ((Name -> Name) -> f (Name -> Name)) -> BaseRules -> f BaseRules -- | How to rename the base functor type field names (in records). -- -- Default is to append F or $. baseRulesField :: Functor f => ((Name -> Name) -> f (Name -> Name)) -> BaseRules -> f BaseRules