{-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE DerivingStrategies #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE LambdaCase #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} ----------------------------------------------------------------------------- -- | -- Module : Refinery.Tactic.Internal -- Copyright : (c) Reed Mullanix 2019 -- License : BSD-style -- Maintainer : reedmullanix@gmail.com -- -- -- = WARNING -- This module is considered __internal__, and can -- change at any given time. module Refinery.Tactic.Internal ( TacticT(..) , tactic , proofState , proofState_ , mapTacticT -- * Rules , RuleT(..) , subgoal , unsolvable ) where import GHC.Generics import Control.Applicative import Control.Monad.Identity import Control.Monad.Except import Control.Monad.Catch import Control.Monad.State.Strict import Control.Monad.Trans () import Control.Monad.IO.Class () import Control.Monad.Morph import Data.Coerce import Refinery.ProofState -- | A @'TacticT'@ is a monad transformer that performs proof refinement. -- The type variables signifiy: -- -- * @jdg@ - The goal type. This is the thing we are trying to construct a proof of. -- * @ext@ - The extract type. This is what we will recieve after running the tactic. -- * @err@ - The error type. We can use 'throwError' to abort the computation with a provided error -- * @s@ - The state type. -- * @m@ - The base monad. -- * @a@ - The return value. This to make @'TacticT'@ a monad, and will always be @'Prelude.()'@ -- -- One of the most important things about this type is it's 'Monad' instance. @t1 >> t2@ -- Will execute @t1@ against the current goal, and then execute @t2@ on _all_ of the subgoals generated -- by @t2@. -- -- This Monad instance is lawful, and has been tested thouroughly, and a version of it has been formally verified in Agda. -- _However_, just because it is correct doesn't mean that it lines up with your intuitions of how Monads behave! -- In practice, it feels like a combination of the Non-Determinisitic Monads and some of the Time Travelling ones. -- That doesn't mean that it's impossible to understand, just that it may push the boundaries of you intuitions. newtype TacticT jdg ext err s m a = TacticT { unTacticT :: StateT jdg (ProofStateT ext ext err s m) a } deriving ( Functor , Applicative , Alternative , Monad , MonadPlus , MonadIO , MonadThrow , Generic ) instance (Monoid jdg, Show a, Show jdg, Show err, Show ext, Show (m (ProofStateT ext ext err s m (a, jdg)))) => Show (TacticT jdg ext err s m a) where show = show . flip runStateT mempty . unTacticT -- | Helper function for producing a tactic. tactic :: (jdg -> ProofStateT ext ext err s m (a, jdg)) -> TacticT jdg ext err s m a tactic t = TacticT $ StateT t -- | @proofState t j@ will deconstruct a tactic @t@ into a 'ProofStateT' by running it at @j@. proofState :: TacticT jdg ext err s m a -> jdg -> ProofStateT ext ext err s m (a, jdg) proofState t j = runStateT (unTacticT t) j -- | Like 'proofState', but we discard the return value of @t@. proofState_ :: (Functor m) => TacticT jdg ext err s m a -> jdg -> ProofStateT ext ext err s m jdg proofState_ t j = execStateT (unTacticT t) j -- | Map the unwrapped computation using the given function mapTacticT :: (Monad m) => (m a -> m b) -> TacticT jdg ext err s m a -> TacticT jdg ext err s m b mapTacticT f (TacticT m) = TacticT $ m >>= (lift . lift . f . return) instance MFunctor (TacticT jdg ext err s) where hoist f = TacticT . (hoist (hoist f)) . unTacticT instance MonadTrans (TacticT jdg ext err s) where lift m = TacticT $ lift $ lift m instance (Monad m) => MonadState s (TacticT jdg ext err s m) where state f = tactic $ \j -> fmap (,j) $ state f -- | A @'RuleT'@ is a monad transformer for creating inference rules. newtype RuleT jdg ext err s m a = RuleT { unRuleT :: ProofStateT ext a err s m jdg } deriving stock Generic instance (Show jdg, Show err, Show a, Show (m (ProofStateT ext a err s m jdg))) => Show (RuleT jdg ext err s m a) where show = show . unRuleT instance Functor m => Functor (RuleT jdg ext err s m) where fmap f = coerce (mapExtract id f) instance Monad m => Applicative (RuleT jdg ext err s m) where pure = return (<*>) = ap instance Monad m => Alternative (RuleT jdg ext err s m) where empty = coerce Empty (<|>) = coerce Alt instance Monad m => Monad (RuleT jdg ext err s m) where return = coerce . Axiom RuleT (Subgoal goal k) >>= f = coerce $ Subgoal goal $ fmap (bindAlaCoerce f) k RuleT (Effect m) >>= f = coerce $ Effect $ fmap (bindAlaCoerce f) m RuleT (Stateful s) >>= f = coerce $ Stateful $ fmap (bindAlaCoerce f) . s RuleT (Alt p1 p2) >>= f = coerce $ Alt (bindAlaCoerce f p1) (bindAlaCoerce f p2) RuleT (Interleave p1 p2) >>= f = coerce $ Interleave (bindAlaCoerce f p1) (bindAlaCoerce f p2) RuleT (Commit p1 p2) >>= f = coerce $ Commit (bindAlaCoerce f p1) (bindAlaCoerce f p2) RuleT Empty >>= _ = coerce $ Empty RuleT (Failure err k) >>= f = coerce $ Failure err $ fmap (bindAlaCoerce f) k RuleT (Handle p h) >>= f = coerce $ Handle (bindAlaCoerce f p) h RuleT (Axiom e) >>= f = f e instance Monad m => MonadState s (RuleT jdg ext err s m) where state f = RuleT $ Stateful $ \s -> let (a, s') = f s in (s', Axiom a) bindAlaCoerce :: (Monad m, Coercible c (m b), Coercible a1 (m a2)) => (a2 -> m b) -> a1 -> c bindAlaCoerce f = coerce . (f =<<) . coerce instance MonadTrans (RuleT jdg ext err s) where lift = coerce . Effect . fmap Axiom instance MFunctor (RuleT jdg ext err s) where hoist nat = hoist nat . coerce instance MonadIO m => MonadIO (RuleT jdg ext err s m) where liftIO = lift . liftIO -- | Create a subgoal, and return the resulting extract. subgoal :: jdg -> RuleT jdg ext err s m ext subgoal jdg = RuleT $ Subgoal jdg Axiom -- | Create an "unsolvable" hole. These holes are ignored by subsequent tactics, -- but do not cause a backtracking failure. unsolvable :: err -> RuleT jdg ext err s m ext unsolvable err = RuleT $ Failure err Axiom