module Data.Reflection
(
ReifiesNum(..)
, reifyIntegral
, ReifiesNums(..)
, reifyIntegrals
, ReifiesStorable(..)
, reifyStorable
, Reifies(..)
, reify
) where
import Foreign.C.Types
import Foreign.Marshal.Alloc
import Foreign.Marshal.Array
import Foreign.Marshal.Utils
import Foreign.Ptr
import Foreign.StablePtr
import Foreign.Storable
import System.IO.Unsafe
import Control.Applicative
import Prelude hiding (succ, pred)
import Data.Proxy
newtype Zero = Zero Zero deriving (Show)
newtype Twice s = Twice (Twice s) deriving (Show)
newtype Succ s = Succ (Succ s) deriving (Show)
newtype Pred s = Pred (Pred s) deriving (Show)
class Unused t where
unused :: t -> ()
instance Unused Zero where
unused Zero{} = ()
instance Unused (Twice s) where
unused Twice{} = ()
instance Unused (Succ s) where
unused Succ{} = ()
instance Unused (Pred s) where
unused Pred{} = ()
class ReifiesNum s where
reflectNum :: Num a => proxy s -> a
instance ReifiesNum Zero where
reflectNum = pure 0
pop :: proxy (f s) -> Proxy s
pop _ = Proxy
instance ReifiesNum s => ReifiesNum (Twice s) where
reflectNum p = 2 * reflectNum (pop p)
instance ReifiesNum s => ReifiesNum (Succ s) where
reflectNum p = 1 + reflectNum (pop p)
instance ReifiesNum s => ReifiesNum (Pred s) where
reflectNum p = reflectNum (pop p) 1
reifyIntegral :: Integral a => a -> (forall s. ReifiesNum s => Proxy s -> w) -> w
reifyIntegral i k = case quotRem i 2 of
(0, 0) -> zero k
(j, 0) -> reifyIntegral j (k . twice)
(j, 1) -> reifyIntegral j (k . succ . twice)
(j,1) -> reifyIntegral j (k . pred . twice)
_ -> undefined
twice :: proxy s -> Proxy (Twice s)
twice _ = Proxy
succ :: proxy s -> Proxy (Succ s)
succ _ = Proxy
pred :: proxy s -> Proxy (Pred s)
pred _ = Proxy
zero :: (Proxy Zero -> a) -> a
zero k = k Proxy
newtype Nil = Nil Nil
newtype Cons s ss = Cons (Cons s ss)
instance Unused Nil where unused Nil{} = ()
instance Unused (Cons s ss) where unused Cons{} = ()
class ReifiesNums ss where
reflectNums :: Num a => proxy ss -> [a]
instance ReifiesNums Nil where
reflectNums = pure []
instance (ReifiesNum s, ReifiesNums ss) => ReifiesNums (Cons s ss) where
reflectNums p = reflectNum (car p) : reflectNums (cdr p) where
car :: proxy (Cons s ss) -> Proxy s
car _ = Proxy
cdr :: proxy (Cons s ss) -> Proxy ss
cdr _ = Proxy
reifyIntegrals :: Integral a => [a] -> (forall ss. ReifiesNums ss => Proxy ss -> w) -> w
reifyIntegrals [] k = nil k where
nil :: (Proxy Nil -> a') -> a'
nil f = f Proxy
reifyIntegrals (i:ii) k = reifyIntegral i (reifyIntegrals ii (cons k)) where
cons :: (Proxy (Cons s' ss') -> a') -> proxy ss' -> proxy s' -> a'
cons f _ _ = f Proxy
newtype Store s a = Store (Store s a)
instance Unused (Store s a) where unused Store{} = ()
class ReifiesStorable s where
reflectStorable :: Storable a => proxy (s a) -> a
instance ReifiesNums s => ReifiesStorable (Store s) where
reflectStorable = r where
r = unsafePerformIO $ alloca $ \p -> do
pokeArray (castPtr p) (bytes reflectNums r)
pure <$> peek p
bytes :: (Proxy s' -> [CChar]) -> (proxy (Store s' b) -> b) -> [CChar]
bytes k _ = k Proxy
store :: proxy s' -> Proxy (Store s' c)
store _ = Proxy
reifyStorable :: Storable a => a -> (forall s. ReifiesStorable s => Proxy (s a) -> w) -> w
reifyStorable a k = reifyIntegrals bytes (k . store)
where
bytes :: [CChar]
bytes = unsafePerformIO $ with a (peekArray (sizeOf a) . castPtr)
class Reifies s a | s -> a where
reflect :: proxy s -> a
newtype Stable s a = Stable (s (Stable s a))
instance Unused (Stable s a) where
unused Stable{} = ()
instance ReifiesStorable s => Reifies (Stable s a) a where
reflect = r where
r = unsafePerformIO $
pure <$> deRefStablePtr p <* freeStablePtr p
p = pointer reflectStorable r
pointer :: (Proxy (s' p) -> p) -> (proxy (Stable s' a') -> a') -> p
pointer f _ = f Proxy
reflectBefore :: Reifies s a => (Proxy s -> b) -> proxy s -> b
reflectBefore f = let b = f Proxy in b `seq` const b
reify :: a -> (forall s. Reifies s a => Proxy s -> w) -> w
reify a k = unsafePerformIO $ do
p <- newStablePtr a
reifyStorable p (reflectBefore (return <$> k) . stable)
where
stable :: proxy (s' (StablePtr a')) -> Proxy (Stable s' a')
stable _ = Proxy