-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Reifies arbitrary terms into types that can be reflected back into terms -- -- This package addresses the configuration problem which is -- propogating configurations that are available at run-time, allowing -- multible configurations to coexist without resorting to mutable global -- variables or System.IO.Unsafe.unsafePerformIO. -- -- An example is modular arithmetic where the modulus itself can be -- supplied at run-time: -- --
-- foo :: Modular s => Modulus s -- foo = 1000 * 1000 * 5 + 2000 ---- --
-- >>> withModulus 1280 foo -- 1040 ---- -- given the following setup: -- --
-- {--}
--
-- import Data.Proxy (Proxy(Proxy))
-- import Data.Reflection (Reifies, reflect, reify)
--
--
-- and definitions:
--
--
-- data Modulus s = M { getModulus :: Integer }
-- type Modular s = Data.Reflection.Reifies s Integer
--
-- normalize :: forall s. Modular s => Integer -> Modulus s
-- normalize n = M (mod n modulus) where
-- modulus = Data.Reflection.reflect (Data.Proxy.Proxy :: Data.Proxy.Proxy s)
--
-- instance Modular s => Num (Modulus s) where
-- M a + M b = normalize (a + b)
-- M a * M b = normalize (a * b)
--
-- withModulus :: Integer -> (forall s. Modular s => Modulus s) -> Integer
-- withModulus m v = Data.Reflection.reify m (getModulus . asProxyOf v)
-- where
-- asProxyOf :: f s -> Proxy s -> f s
-- asProxyOf = const
--
--
-- That package is an implementation of the ideas presented in the paper
-- "Functional Pearl: Implicit Configurations" by Oleg Kiselyov and
-- Chung-chieh Shan (original paper). However, the API has been
-- streamlined to improve performance.
--
-- Austin Seipp's tutorial Reflecting values to types and back
-- provides a summary of the approach taken by this library, along with
-- more motivating examples.
@package reflection
@version 1.5.1.1
-- | Reifies arbitrary terms at the type level. Based on the Functional
-- Pearl: Implicit Configurations paper by Oleg Kiselyov and Chung-chieh
-- Shan.
--
-- http://okmij.org/ftp/Haskell/tr-15-04.pdf
--
-- The approach from the paper was modified to work with Data.Proxy and
-- to cheat by using knowledge of GHC's internal representations by
-- Edward Kmett and Elliott Hird.
--
-- Usage comes down to two combinators, reify and reflect.
--
-- -- >>> reify 6 (\p -> reflect p + reflect p) -- 12 ---- -- The argument passed along by reify is just a data Proxy t = -- Proxy, so all of the information needed to reconstruct your value -- has been moved to the type level. This enables it to be used when -- constructing instances (see examples/Monoid.hs). -- -- In addition, a simpler API is offered for working with singleton -- values such as a system configuration, etc. module Data.Reflection class Reifies s a | s -> a reflect :: Reifies s a => proxy s -> a -- | Reify a value at the type level, to be recovered with reflect. reify :: a -> (forall (s :: *). Reifies s a => Proxy s -> r) -> r -- | This is a version of Reifies that allows for only a single -- value. -- -- This is easier to work with than Reifies and permits extended -- defaulting, but it only offers a single reflected value of a given -- type at a time. class Given a given :: Given a => a -- | Reify a value into an instance to be recovered with given. -- -- You should only give a single value for each type. If multiple -- instances are in scope, then the behavior is implementation defined. give :: a -> (Given a => r) -> r -- | This can be used to generate a template haskell splice for a type -- level version of a given int. -- -- This does not use GHC TypeLits, instead it generates a numeric type by -- hand similar to the ones used in the "Functional Pearl: Implicit -- Configurations" paper by Oleg Kiselyov and Chung-Chieh Shan. -- -- instance Num (Q Exp) provided in this package allows writing -- $(3) instead of $(int 3). Sometimes the two will -- produce the same representation (if compiled without the -- -DUSE_TYPE_LITS preprocessor directive). int :: Int -> TypeQ -- | This is a restricted version of int that can only generate -- natural numbers. Attempting to generate a negative number results in a -- compile time error. Also the resulting sequence will consist entirely -- of Z, D, and SD constructors representing the number in zeroless -- binary. nat :: Int -> TypeQ data Z data D (n :: *) data SD (n :: *) data PD (n :: *) instance Num Exp instance Num Type instance Fractional a => Fractional (Q a) instance Num a => Num (Q a) instance Reifies n Int => Reifies (PD n) Int instance Reifies n Int => Reifies (SD n) Int instance Reifies n Int => Reifies (D n) Int instance Reifies Z Int instance KnownSymbol n => Reifies n String instance KnownNat n => Reifies n Integer