{-# LANGUAGE CPP #-} {-# LANGUAGE EmptyDataDecls #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE PatternGuards #-} {-# LANGUAGE Rank2Types #-} {-# LANGUAGE ScopedTypeVariables #-} #if __GLASGOW_HASKELL__ >= 706 {-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE TypeOperators #-} #define USE_TYPE_LITS 1 #endif #ifdef MIN_VERSION_template_haskell # if __GLASGOW_HASKELL__ >= 800 -- TH-subset that works with stage1 & unregisterised GHCs {-# LANGUAGE TemplateHaskellQuotes #-} # else {-# LANGUAGE TemplateHaskell #-} # endif #endif {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE DeriveDataTypeable #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-cse #-} {-# OPTIONS_GHC -fno-full-laziness #-} {-# OPTIONS_GHC -fno-float-in #-} {-# OPTIONS_GHC -fno-warn-orphans #-} {-# OPTIONS_GHC -fno-warn-unused-binds #-} #ifndef MIN_VERSION_base #define MIN_VERSION_base(x,y,z) 1 #endif ---------------------------------------------------------------------------- -- | -- Module : Data.Reflection -- Copyright : 2009-2015 Edward Kmett, -- 2012 Elliott Hird, -- 2004 Oleg Kiselyov and Chung-chieh Shan -- License : BSD3 -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- -- Reifies arbitrary terms at the type level. Based on the Functional -- Pearl: Implicit Configurations paper by Oleg Kiselyov and -- Chung-chieh Shan. -- -- -- -- The approach from the paper was modified to work with Data.Proxy -- and to cheat by using knowledge of GHC's internal representations -- by Edward Kmett and Elliott Hird. -- -- Usage comes down to two combinators, 'reify' and 'reflect'. -- -- >>> reify 6 (\p -> reflect p + reflect p) -- 12 -- -- The argument passed along by reify is just a @data 'Proxy' t = -- Proxy@, so all of the information needed to reconstruct your value -- has been moved to the type level. This enables it to be used when -- constructing instances (see @examples/Monoid.hs@). -- -- In addition, a simpler API is offered for working with singleton -- values such as a system configuration, etc. ------------------------------------------------------------------------------- module Data.Reflection ( -- * Reflection Reifies(..) , reify #if __GLASGOW_HASKELL__ >= 708 , reifyNat , reifySymbol #endif , reifyTypeable -- * Given , Given(..) , give #ifdef MIN_VERSION_template_haskell -- * Template Haskell reflection , int, nat #endif -- * Useful compile time naturals , Z, D, SD, PD -- * Reified Monoids , ReifiedMonoid(..) , ReflectedMonoid(..) , reifyMonoid , foldMapBy , foldBy -- * Reified Applicatives , ReifiedApplicative(..) , ReflectedApplicative(..) , reifyApplicative , traverseBy , sequenceBy ) where import Control.Applicative #ifdef MIN_VERSION_template_haskell import Control.Monad #endif import Data.Bits #if __GLASGOW_HASKELL__ < 710 import Data.Foldable #endif import Data.Semigroup as Sem import Data.Proxy #if __GLASGOW_HASKELL__ < 710 import Data.Traversable #endif import Data.Typeable import Data.Word import Foreign.Ptr import Foreign.StablePtr #if (__GLASGOW_HASKELL__ >= 707) || (defined(MIN_VERSION_template_haskell) && USE_TYPE_LITS) import GHC.TypeLits #endif #ifdef __HUGS__ import Hugs.IOExts #endif #ifdef MIN_VERSION_template_haskell import Language.Haskell.TH hiding (reify) #endif import System.IO.Unsafe #ifndef __HUGS__ import Unsafe.Coerce #endif #ifdef HLINT {-# ANN module "HLint: ignore Avoid lambda" #-} #endif ------------------------------------------------------------------------------ -- Reifies ------------------------------------------------------------------------------ class Reifies s a | s -> a where -- | Recover a value inside a 'reify' context, given a proxy for its -- reified type. reflect :: proxy s -> a newtype Magic a r = Magic (forall (s :: *). Reifies s a => Proxy s -> r) -- | Reify a value at the type level, to be recovered with 'reflect'. reify :: forall a r. a -> (forall (s :: *). Reifies s a => Proxy s -> r) -> r reify a k = unsafeCoerce (Magic k :: Magic a r) (const a) Proxy {-# INLINE reify #-} #if __GLASGOW_HASKELL__ >= 707 instance KnownNat n => Reifies n Integer where reflect = natVal instance KnownSymbol n => Reifies n String where reflect = symbolVal #endif #if __GLASGOW_HASKELL__ >= 708 -------------------------------------------------------------------------------- -- KnownNat -------------------------------------------------------------------------------- newtype MagicNat r = MagicNat (forall (n :: Nat). KnownNat n => Proxy n -> r) -- | This upgraded version of 'reify' can be used to generate a 'KnownNat' suitable for use with other APIs. -- -- /Available only on GHC 7.8+/ -- -- >>> reifyNat 4 natVal -- 4 -- -- >>> reifyNat 4 reflect -- 4 reifyNat :: forall r. Integer -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r reifyNat n k = unsafeCoerce (MagicNat k :: MagicNat r) n Proxy -------------------------------------------------------------------------------- -- KnownSymbol -------------------------------------------------------------------------------- newtype MagicSymbol r = MagicSymbol (forall (n :: Symbol). KnownSymbol n => Proxy n -> r) -- | This upgraded version of 'reify' can be used to generate a 'KnownSymbol' suitable for use with other APIs. -- -- /Available only on GHC 7.8+/ -- -- >>> reifySymbol "hello" symbolVal -- "hello" -- -- >>> reifySymbol "hello" reflect -- "hello" reifySymbol :: forall r. String -> (forall (n :: Symbol). KnownSymbol n => Proxy n -> r) -> r reifySymbol n k = unsafeCoerce (MagicSymbol k :: MagicSymbol r) n Proxy #endif ------------------------------------------------------------------------------ -- Given ------------------------------------------------------------------------------ -- | This is a version of 'Reifies' that allows for only a single value. -- -- This is easier to work with than 'Reifies' and permits extended defaulting, -- but it only offers a single reflected value of a given type at a time. class Given a where -- | Recover the value of a given type previously encoded with 'give'. given :: a newtype Gift a r = Gift (Given a => r) -- | Reify a value into an instance to be recovered with 'given'. -- -- You should /only/ 'give' a single value for each type. If multiple instances -- are in scope, then the behavior is implementation defined. give :: forall a r. a -> (Given a => r) -> r give a k = unsafeCoerce (Gift k :: Gift a r) a {-# INLINE give #-} -------------------------------------------------------------------------------- -- Explicit Numeric Reflection -------------------------------------------------------------------------------- -- | 0 data Z -- | 2/n/ data D (n :: *) -- | 2/n/ + 1 data SD (n :: *) -- | 2/n/ - 1 data PD (n :: *) instance Reifies Z Int where reflect _ = 0 {-# INLINE reflect #-} retagD :: (Proxy n -> a) -> proxy (D n) -> a retagD f _ = f Proxy {-# INLINE retagD #-} retagSD :: (Proxy n -> a) -> proxy (SD n) -> a retagSD f _ = f Proxy {-# INLINE retagSD #-} retagPD :: (Proxy n -> a) -> proxy (PD n) -> a retagPD f _ = f Proxy {-# INLINE retagPD #-} instance Reifies n Int => Reifies (D n) Int where reflect = (\n -> n + n) `fmap` retagD reflect {-# INLINE reflect #-} instance Reifies n Int => Reifies (SD n) Int where reflect = (\n -> n + n + 1) `fmap` retagSD reflect {-# INLINE reflect #-} instance Reifies n Int => Reifies (PD n) Int where reflect = (\n -> n + n - 1) `fmap` retagPD reflect {-# INLINE reflect #-} #ifdef MIN_VERSION_template_haskell -- | This can be used to generate a template haskell splice for a type level version of a given 'int'. -- -- This does not use GHC TypeLits, instead it generates a numeric type by hand similar to the ones used -- in the \"Functional Pearl: Implicit Configurations\" paper by Oleg Kiselyov and Chung-Chieh Shan. -- -- @instance Num (Q Exp)@ provided in this package allows writing @$(3)@ -- instead of @$(int 3)@. Sometimes the two will produce the same -- representation (if compiled without the @-DUSE_TYPE_LITS@ preprocessor -- directive). int :: Int -> TypeQ int n = case quotRem n 2 of (0, 0) -> conT ''Z (q,-1) -> conT ''PD `appT` int q (q, 0) -> conT ''D `appT` int q (q, 1) -> conT ''SD `appT` int q _ -> error "ghc is bad at math" -- | This is a restricted version of 'int' that can only generate natural numbers. Attempting to generate -- a negative number results in a compile time error. Also the resulting sequence will consist entirely of -- Z, D, and SD constructors representing the number in zeroless binary. nat :: Int -> TypeQ nat n | n >= 0 = int n | otherwise = error "nat: negative" #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ < 704 instance Show (Q a) where show _ = "Q" instance Eq (Q a) where _ == _ = False #endif instance Num a => Num (Q a) where (+) = liftM2 (+) (*) = liftM2 (*) (-) = liftM2 (-) negate = fmap negate abs = fmap abs signum = fmap signum fromInteger = return . fromInteger instance Fractional a => Fractional (Q a) where (/) = liftM2 (/) recip = fmap recip fromRational = return . fromRational -- | This permits the use of $(5) as a type splice. instance Num Type where #ifdef USE_TYPE_LITS LitT (NumTyLit a) + LitT (NumTyLit b) = LitT (NumTyLit (a+b)) a + b = AppT (AppT (VarT ''(+)) a) b LitT (NumTyLit a) * LitT (NumTyLit b) = LitT (NumTyLit (a*b)) (*) a b = AppT (AppT (VarT ''(GHC.TypeLits.*)) a) b #if MIN_VERSION_base(4,8,0) a - b = AppT (AppT (VarT ''(-)) a) b #else (-) = error "Type.(-): undefined" #endif fromInteger = LitT . NumTyLit #else (+) = error "Type.(+): undefined" (*) = error "Type.(*): undefined" (-) = error "Type.(-): undefined" fromInteger n = case quotRem n 2 of (0, 0) -> ConT ''Z (q,-1) -> ConT ''PD `AppT` fromInteger q (q, 0) -> ConT ''D `AppT` fromInteger q (q, 1) -> ConT ''SD `AppT` fromInteger q _ -> error "ghc is bad at math" #endif abs = error "Type.abs" signum = error "Type.signum" onProxyType1 :: (Type -> Type) -> (Exp -> Exp) onProxyType1 f (SigE _ ta@(AppT (ConT proxyName) (VarT _))) | proxyName == ''Proxy = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` f ta) onProxyType1 f a = LamE [SigP WildP na] body `AppE` a where body = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` f na) na = VarT (mkName "na") onProxyType2 :: Name -> (Type -> Type -> Type) -> (Exp -> Exp -> Exp) onProxyType2 _fName f (SigE _ (AppT (ConT proxyName) ta)) (SigE _ (AppT (ConT proxyName') tb)) | proxyName == ''Proxy, proxyName' == ''Proxy = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` f ta tb) -- the above case should only match for things like $(2 + 2) onProxyType2 fName _f a b = VarE fName `AppE` a `AppE` b -- | This permits the use of $(5) as an expression splice, -- which stands for @Proxy :: Proxy $(5)@ instance Num Exp where (+) = onProxyType2 'addProxy (+) (*) = onProxyType2 'mulProxy (*) (-) = onProxyType2 'subProxy (-) negate = onProxyType1 negate abs = onProxyType1 abs signum = onProxyType1 signum fromInteger n = ConE 'Proxy `SigE` (ConT ''Proxy `AppT` fromInteger n) #ifdef USE_TYPE_LITS addProxy :: Proxy a -> Proxy b -> Proxy (a + b) addProxy _ _ = Proxy mulProxy :: Proxy a -> Proxy b -> Proxy (a * b) mulProxy _ _ = Proxy #if MIN_VERSION_base(4,8,0) subProxy :: Proxy a -> Proxy b -> Proxy (a - b) subProxy _ _ = Proxy #else subProxy :: Proxy a -> Proxy b -> Proxy c subProxy _ _ = error "Exp.(-): undefined" #endif -- fromInteger = LitT . NumTyLit #else addProxy :: Proxy a -> Proxy b -> Proxy c addProxy _ _ = error "Exp.(+): undefined" mulProxy :: Proxy a -> Proxy b -> Proxy c mulProxy _ _ = error "Exp.(*): undefined" subProxy :: Proxy a -> Proxy b -> Proxy c subProxy _ _ = error "Exp.(-): undefined" #endif #endif -------------------------------------------------------------------------------- -- * Typeable Reflection -------------------------------------------------------------------------------- class Typeable s => B s where reflectByte :: proxy s -> IntPtr #define BYTES(GO) \ GO(T0,0) GO(T1,1) GO(T2,2) GO(T3,3) GO(T4,4) GO(T5,5) GO(T6,6) GO(T7,7) GO(T8,8) GO(T9,9) GO(T10,10) GO(T11,11) \ GO(T12,12) GO(T13,13) GO(T14,14) GO(T15,15) GO(T16,16) GO(T17,17) GO(T18,18) GO(T19,19) GO(T20,20) GO(T21,21) GO(T22,22) \ GO(T23,23) GO(T24,24) GO(T25,25) GO(T26,26) GO(T27,27) GO(T28,28) GO(T29,29) GO(T30,30) GO(T31,31) GO(T32,32) GO(T33,33) \ GO(T34,34) GO(T35,35) GO(T36,36) GO(T37,37) GO(T38,38) GO(T39,39) GO(T40,40) GO(T41,41) GO(T42,42) GO(T43,43) GO(T44,44) \ GO(T45,45) GO(T46,46) GO(T47,47) GO(T48,48) GO(T49,49) GO(T50,50) GO(T51,51) GO(T52,52) GO(T53,53) GO(T54,54) GO(T55,55) \ GO(T56,56) GO(T57,57) GO(T58,58) GO(T59,59) GO(T60,60) GO(T61,61) GO(T62,62) GO(T63,63) GO(T64,64) GO(T65,65) GO(T66,66) \ GO(T67,67) GO(T68,68) GO(T69,69) GO(T70,70) GO(T71,71) GO(T72,72) GO(T73,73) GO(T74,74) GO(T75,75) GO(T76,76) GO(T77,77) \ GO(T78,78) GO(T79,79) GO(T80,80) GO(T81,81) GO(T82,82) GO(T83,83) GO(T84,84) GO(T85,85) GO(T86,86) GO(T87,87) GO(T88,88) \ GO(T89,89) GO(T90,90) GO(T91,91) GO(T92,92) GO(T93,93) GO(T94,94) GO(T95,95) GO(T96,96) GO(T97,97) GO(T98,98) GO(T99,99) \ GO(T100,100) GO(T101,101) GO(T102,102) GO(T103,103) GO(T104,104) GO(T105,105) GO(T106,106) GO(T107,107) GO(T108,108) \ GO(T109,109) GO(T110,110) GO(T111,111) GO(T112,112) GO(T113,113) GO(T114,114) GO(T115,115) GO(T116,116) GO(T117,117) \ GO(T118,118) GO(T119,119) GO(T120,120) GO(T121,121) GO(T122,122) GO(T123,123) GO(T124,124) GO(T125,125) GO(T126,126) \ GO(T127,127) GO(T128,128) GO(T129,129) GO(T130,130) GO(T131,131) GO(T132,132) GO(T133,133) GO(T134,134) GO(T135,135) \ GO(T136,136) GO(T137,137) GO(T138,138) GO(T139,139) GO(T140,140) GO(T141,141) GO(T142,142) GO(T143,143) GO(T144,144) \ GO(T145,145) GO(T146,146) GO(T147,147) GO(T148,148) GO(T149,149) GO(T150,150) GO(T151,151) GO(T152,152) GO(T153,153) \ GO(T154,154) GO(T155,155) GO(T156,156) GO(T157,157) GO(T158,158) GO(T159,159) GO(T160,160) GO(T161,161) GO(T162,162) \ GO(T163,163) GO(T164,164) GO(T165,165) GO(T166,166) GO(T167,167) GO(T168,168) GO(T169,169) GO(T170,170) GO(T171,171) \ GO(T172,172) GO(T173,173) GO(T174,174) GO(T175,175) GO(T176,176) GO(T177,177) GO(T178,178) GO(T179,179) GO(T180,180) \ GO(T181,181) GO(T182,182) GO(T183,183) GO(T184,184) GO(T185,185) GO(T186,186) GO(T187,187) GO(T188,188) GO(T189,189) \ GO(T190,190) GO(T191,191) GO(T192,192) GO(T193,193) GO(T194,194) GO(T195,195) GO(T196,196) GO(T197,197) GO(T198,198) \ GO(T199,199) GO(T200,200) GO(T201,201) GO(T202,202) GO(T203,203) GO(T204,204) GO(T205,205) GO(T206,206) GO(T207,207) \ GO(T208,208) GO(T209,209) GO(T210,210) GO(T211,211) GO(T212,212) GO(T213,213) GO(T214,214) GO(T215,215) GO(T216,216) \ GO(T217,217) GO(T218,218) GO(T219,219) GO(T220,220) GO(T221,221) GO(T222,222) GO(T223,223) GO(T224,224) GO(T225,225) \ GO(T226,226) GO(T227,227) GO(T228,228) GO(T229,229) GO(T230,230) GO(T231,231) GO(T232,232) GO(T233,233) GO(T234,234) \ GO(T235,235) GO(T236,236) GO(T237,237) GO(T238,238) GO(T239,239) GO(T240,240) GO(T241,241) GO(T242,242) GO(T243,243) \ GO(T244,244) GO(T245,245) GO(T246,246) GO(T247,247) GO(T248,248) GO(T249,249) GO(T250,250) GO(T251,251) GO(T252,252) \ GO(T253,253) GO(T254,254) GO(T255,255) #define GO(Tn,n) \ newtype Tn = Tn Tn deriving Typeable; \ instance B Tn where { \ reflectByte _ = n \ }; BYTES(GO) #undef GO impossible :: a impossible = error "Data.Reflection.reifyByte: impossible" reifyByte :: Word8 -> (forall (s :: *). B s => Proxy s -> r) -> r reifyByte w k = case w of { #define GO(Tn,n) n -> k (Proxy :: Proxy Tn); BYTES(GO) #undef GO _ -> impossible } newtype W (b0 :: *) (b1 :: *) (b2 :: *) (b3 :: *) = W (W b0 b1 b2 b3) deriving Typeable newtype Stable (w0 :: *) (w1 :: *) (a :: *) = Stable (Stable w0 w1 a) deriving Typeable stable :: p b0 -> p b1 -> p b2 -> p b3 -> p b4 -> p b5 -> p b6 -> p b7 -> Proxy (Stable (W b0 b1 b2 b3) (W b4 b5 b6 b7) a) stable _ _ _ _ _ _ _ _ = Proxy {-# INLINE stable #-} stablePtrToIntPtr :: StablePtr a -> IntPtr stablePtrToIntPtr = ptrToIntPtr . castStablePtrToPtr {-# INLINE stablePtrToIntPtr #-} intPtrToStablePtr :: IntPtr -> StablePtr a intPtrToStablePtr = castPtrToStablePtr . intPtrToPtr {-# INLINE intPtrToStablePtr #-} byte0 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b0 byte0 _ = Proxy byte1 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b1 byte1 _ = Proxy byte2 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b2 byte2 _ = Proxy byte3 :: p (Stable (W b0 b1 b2 b3) w1 a) -> Proxy b3 byte3 _ = Proxy byte4 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b4 byte4 _ = Proxy byte5 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b5 byte5 _ = Proxy byte6 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b6 byte6 _ = Proxy byte7 :: p (Stable w0 (W b4 b5 b6 b7) a) -> Proxy b7 byte7 _ = Proxy argument :: (p s -> r) -> Proxy s argument _ = Proxy instance (B b0, B b1, B b2, B b3, B b4, B b5, B b6, B b7, w0 ~ W b0 b1 b2 b3, w1 ~ W b4 b5 b6 b7) => Reifies (Stable w0 w1 a) a where reflect = r where r = unsafePerformIO $ const <$> deRefStablePtr p <* freeStablePtr p s = argument r p = intPtrToStablePtr $ reflectByte (byte0 s) .|. (reflectByte (byte1 s) `shiftL` 8) .|. (reflectByte (byte2 s) `shiftL` 16) .|. (reflectByte (byte3 s) `shiftL` 24) .|. (reflectByte (byte4 s) `shiftL` 32) .|. (reflectByte (byte5 s) `shiftL` 40) .|. (reflectByte (byte6 s) `shiftL` 48) .|. (reflectByte (byte7 s) `shiftL` 56) {-# NOINLINE reflect #-} -- This had to be moved to the top level, due to an apparent bug in -- the ghc inliner introduced in ghc 7.0.x reflectBefore :: forall (proxy :: * -> *) s b. (Proxy s -> b) -> proxy s -> b reflectBefore f = const $! f Proxy {-# NOINLINE reflectBefore #-} -- | Reify a value at the type level in a 'Typeable'-compatible fashion, to be recovered with 'reflect'. -- -- This can be necessary to work around the changes to @Data.Typeable@ in GHC HEAD. reifyTypeable :: Typeable a => a -> (forall (s :: *). (Typeable s, Reifies s a) => Proxy s -> r) -> r #if MIN_VERSION_base(4,4,0) reifyTypeable a k = unsafeDupablePerformIO $ do #else reifyTypeable a k = unsafePerformIO $ do #endif p <- newStablePtr a let n = stablePtrToIntPtr p reifyByte (fromIntegral n) (\s0 -> reifyByte (fromIntegral (n `shiftR` 8)) (\s1 -> reifyByte (fromIntegral (n `shiftR` 16)) (\s2 -> reifyByte (fromIntegral (n `shiftR` 24)) (\s3 -> reifyByte (fromIntegral (n `shiftR` 32)) (\s4 -> reifyByte (fromIntegral (n `shiftR` 40)) (\s5 -> reifyByte (fromIntegral (n `shiftR` 48)) (\s6 -> reifyByte (fromIntegral (n `shiftR` 56)) (\s7 -> reflectBefore (fmap return k) $ stable s0 s1 s2 s3 s4 s5 s6 s7)))))))) data ReifiedMonoid a = ReifiedMonoid { reifiedMappend :: a -> a -> a, reifiedMempty :: a } instance Reifies s (ReifiedMonoid a) => Sem.Semigroup (ReflectedMonoid a s) where ReflectedMonoid x <> ReflectedMonoid y = reflectResult (\m -> ReflectedMonoid (reifiedMappend m x y)) instance Reifies s (ReifiedMonoid a) => Monoid (ReflectedMonoid a s) where #if !(MIN_VERSION_base(4,11,0)) mappend = (<>) #endif mempty = reflectResult (\m -> ReflectedMonoid (reifiedMempty m )) reflectResult :: forall f s a. Reifies s a => (a -> f s) -> f s reflectResult f = f (reflect (Proxy :: Proxy s)) newtype ReflectedMonoid a s = ReflectedMonoid a unreflectedMonoid :: ReflectedMonoid a s -> proxy s -> a unreflectedMonoid (ReflectedMonoid a) _ = a reifyMonoid :: (a -> a -> a) -> a -> (forall (s :: *). Reifies s (ReifiedMonoid a) => t -> ReflectedMonoid a s) -> t -> a reifyMonoid f z m xs = reify (ReifiedMonoid f z) (unreflectedMonoid (m xs)) -- | Fold a value using its 'Foldable' instance using -- explicitly provided 'Monoid' operations. This is like 'fold' -- where the 'Monoid' instance can be manually specified. -- -- @ -- 'foldBy' 'mappend' 'mempty' ≡ 'fold' -- @ -- -- >>> foldBy (++) [] ["hello","world"] -- "helloworld" foldBy :: Foldable t => (a -> a -> a) -> a -> t a -> a foldBy f z = reifyMonoid f z (foldMap ReflectedMonoid) -- | Fold a value using its 'Foldable' instance using -- explicitly provided 'Monoid' operations. This is like 'foldMap' -- where the 'Monoid' instance can be manually specified. -- -- @ -- 'foldMapBy' 'mappend' 'mempty' ≡ 'foldMap' -- @ -- -- >>> foldMapBy (+) 0 length ["hello","world"] -- 10 foldMapBy :: Foldable t => (r -> r -> r) -> r -> (a -> r) -> t a -> r foldMapBy f z g = reifyMonoid f z (foldMap (ReflectedMonoid #. g)) data ReifiedApplicative f = ReifiedApplicative { reifiedPure :: forall a. a -> f a, reifiedAp :: forall a b. f (a -> b) -> f a -> f b } newtype ReflectedApplicative f s a = ReflectedApplicative (f a) instance Reifies s (ReifiedApplicative f) => Functor (ReflectedApplicative f s) where fmap = liftA instance Reifies s (ReifiedApplicative f) => Applicative (ReflectedApplicative f s) where pure a = reflectResult1 (\m -> ReflectedApplicative (reifiedPure m a)) ReflectedApplicative x <*> ReflectedApplicative y = reflectResult1 (\m -> ReflectedApplicative (reifiedAp m x y)) reflectResult1 :: forall f s a b. Reifies s a => (a -> f s b) -> f s b reflectResult1 f = f (reflect (Proxy :: Proxy s)) unreflectedApplicative :: ReflectedApplicative f s a -> proxy s -> f a unreflectedApplicative (ReflectedApplicative a) _ = a reifyApplicative :: (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (forall (s :: *). Reifies s (ReifiedApplicative f) => t -> ReflectedApplicative f s a) -> t -> f a reifyApplicative f g m xs = reify (ReifiedApplicative f g) (unreflectedApplicative (m xs)) -- | Traverse a container using its 'Traversable' instance using -- explicitly provided 'Applicative' operations. This is like 'traverse' -- where the 'Applicative' instance can be manually specified. traverseBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> (a -> f b) -> t a -> f (t b) traverseBy pur app f = reifyApplicative pur app (traverse (ReflectedApplicative #. f)) -- | Sequence a container using its 'Traversable' instance using -- explicitly provided 'Applicative' operations. This is like 'sequence' -- where the 'Applicative' instance can be manually specified. sequenceBy :: Traversable t => (forall x. x -> f x) -> (forall x y. f (x -> y) -> f x -> f y) -> t (f a) -> f (t a) sequenceBy pur app = reifyApplicative pur app (traverse ReflectedApplicative) (#.) :: (b -> c) -> (a -> b) -> a -> c (#.) _ = unsafeCoerce