module Text.Regex.TDFA.NewDFA.Engine(execMatch) where
import Control.Monad(when,forM,forM_,liftM2,foldM,join,filterM)
import Data.Array.Base(unsafeRead,unsafeWrite,STUArray(..))
import GHC.Arr(STArray(..))
import GHC.ST(ST(..))
import GHC.Prim(MutableByteArray#,RealWorld,Int#,sizeofMutableByteArray#,unsafeCoerce#)
import Prelude hiding ((!!))
import Data.Array.MArray(MArray(..),unsafeFreeze)
import Data.Array.IArray(Array,bounds,assocs,Ix(rangeSize,range))
import qualified Data.IntMap.CharMap2 as CMap(findWithDefault)
import Data.IntMap(IntMap)
import qualified Data.IntMap as IMap(null,toList,lookup,insert)
import Data.Maybe(catMaybes)
import Data.Monoid(Monoid(..))
import qualified Data.IntSet as ISet(toAscList)
import Data.Array.IArray((!))
import Data.List(partition,sort,foldl',sortBy,groupBy)
import Data.STRef(STRef,newSTRef,readSTRef,writeSTRef)
import qualified Control.Monad.ST.Lazy as L(ST,runST,strictToLazyST)
import qualified Control.Monad.ST.Strict as S(ST)
import Data.Sequence(Seq,ViewL(..),viewl)
import qualified Data.Sequence as Seq(null)
import qualified Data.ByteString.Char8 as SBS(ByteString)
import qualified Data.ByteString.Lazy.Char8 as LBS(ByteString)
import Text.Regex.Base(MatchArray,MatchOffset,MatchLength)
import qualified Text.Regex.TDFA.IntArrTrieSet as Trie(lookupAsc)
import Text.Regex.TDFA.Common hiding (indent)
import Text.Regex.TDFA.NewDFA.Uncons(Uncons(uncons))
import Text.Regex.TDFA.NewDFA.MakeTest(test_singleline,test_multiline)
import qualified Text.Regex.TDFA.NewDFA.Engine_FA as FA(execMatch)
import qualified Text.Regex.TDFA.NewDFA.Engine_NC as NC(execMatch)
import qualified Text.Regex.TDFA.NewDFA.Engine_NC_FA as NC_FA(execMatch)
err :: String -> a
err s = common_error "Text.Regex.TDFA.NewDFA.Engine"  s
(!!) :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> S.ST s e
(!!) = unsafeRead
set :: (MArray a e (S.ST s),Ix i) => a i e -> Int -> e -> S.ST s ()
set = unsafeWrite
 
execMatch :: Uncons text => Regex -> Position -> Char -> text -> [MatchArray]
execMatch r@(Regex { regex_dfa = DFA {d_id=didIn,d_dt=dtIn}
                   , regex_init = startState
                   , regex_b_index = b_index
                   , regex_b_tags = b_tags_all
                   , regex_trie = trie
                   , regex_tags = aTags
                   , regex_groups = aGroups
                   , regex_isFrontAnchored = frontAnchored
                   , regex_compOptions = CompOption { multiline = newline }
                   , regex_execOptions = ExecOption { captureGroups = capture }})
          offsetIn prevIn inputIn = case (subCapture,frontAnchored) of
                                      (True  ,False) -> L.runST runCaptureGroup
                                      (True  ,True)  -> FA.execMatch r offsetIn prevIn inputIn
                                      (False ,False) -> NC.execMatch r offsetIn prevIn inputIn
                                      (False ,True)  -> NC_FA.execMatch r offsetIn prevIn inputIn
 where
  subCapture :: Bool
  subCapture = capture && (1<=rangeSize (bounds aGroups))
  b_tags :: (Tag,Tag)
  !b_tags = b_tags_all
  orbitTags :: [Tag]
  !orbitTags = map fst . filter ((Orbit==).snd) . assocs $ aTags
  !test = mkTest newline         
  comp :: C s
  comp =  ditzyComp'3 aTags
  runCaptureGroup :: L.ST s [MatchArray]
  runCaptureGroup =  do
    obtainNext <- L.strictToLazyST constructNewEngine
    let loop = do vals <- L.strictToLazyST obtainNext
                  if null vals 
                    then return [] 
                    else do valsRest <- loop
                            return (vals ++ valsRest)
    loop
  constructNewEngine :: S.ST s (S.ST s [MatchArray])
  constructNewEngine =   do
    storeNext <- newSTRef undefined
    writeSTRef storeNext (goNext storeNext)
    let obtainNext = join (readSTRef storeNext)
    return obtainNext
  goNext storeNext =  do
    (SScratch s1In s2In (winQ,blank,which)) <- newScratch b_index b_tags
    _ <- spawnStart b_tags blank startState s1In offsetIn
    eliminatedStateFlag <- newSTRef False
    eliminatedRespawnFlag <- newSTRef False
    let next s1 s2 did dt offset prev input = 
          case dt of
            Testing' {dt_test=wt,dt_a=a,dt_b=b} ->
              if test wt offset prev input
                then next s1 s2 did a offset prev input
                else next s1 s2 did b offset prev input
            Simple' {dt_win=w,dt_trans=t, dt_other=o}
              | IMap.null w ->
                  case uncons input of
                    Nothing -> finalizeWinners
                    Just (c,input') ->
                      case CMap.findWithDefault o c t of
                        Transition {trans_many=DFA {d_id=did',d_dt=dt'},trans_how=dtrans} ->
                          findTrans s1 s2 did did' dt' dtrans offset c input'
              | otherwise -> do
                  (did',dt') <- processWinner s1 did dt w offset
                  next' s1 s2 did' dt' offset prev input
        next' s1 s2 did dt offset prev input = 
          case dt of
            Testing' {dt_test=wt,dt_a=a,dt_b=b} ->
              if test wt offset prev input
                then next' s1 s2 did a offset prev input
                else next' s1 s2 did b offset prev input
            Simple' {dt_trans=t, dt_other=o} ->
              case uncons input of
                Nothing -> finalizeWinners
                Just (c,input') ->
                  case CMap.findWithDefault o c t of
                    Transition {trans_many=DFA {d_id=did',d_dt=dt'},trans_how=dtrans} ->
                      findTrans s1 s2 did did' dt' dtrans offset c input'
        compressOrbits s1 did offset = do
          let getStart state = do start <- maybe (err "compressOrbit,1") (!! 0) =<< m_pos s1 !! state
                                  return (state,start)
              cutoff = offset  50 
          ss <- mapM getStart (ISet.toAscList did)
          let compressOrbit tag = do
                mos <- forM ss ( \ p@(state,_start) -> do
                                  mo <- fmap (IMap.lookup tag) (m_orbit s1 !! state)
                                  case mo of
                                    Just orbits | basePos orbits < cutoff -> return (Just (p,orbits))
                                                | otherwise -> return Nothing
                                    _ -> return Nothing )
                let compressGroup [((state,_),orbit)] | Seq.null (getOrbits orbit) = return ()
                                                      | otherwise =
                      set (m_orbit s1) state 
                      . (IMap.insert tag $! (orbit { ordinal = Nothing, getOrbits = mempty}))
                      =<< m_orbit s1 !! state
                    compressGroup gs = do
                      let sortPos (_,b1) (_,b2) = compare (ordinal b1) (ordinal b2) `mappend`
                                                  compare (inOrbit b2) (inOrbit b1) `mappend`
                                                  comparePos (viewl (getOrbits b1)) (viewl (getOrbits b2))
                          groupPos (_,b1) (_,b2) = ordinal b1 == ordinal b2 && getOrbits b1 == getOrbits b2
                          gs' = zip [(1::Int)..] (groupBy groupPos . sortBy sortPos $ gs)
                      forM_ gs' $ \ (!n,eqs) -> do
                        forM_ eqs $ \ ((state,_),orbit) ->
                          set (m_orbit s1) state
                           . (IMap.insert tag $! (orbit { ordinal = Just n, getOrbits = mempty }))
                            =<< m_orbit s1 !! state
                let sorter ((_,a1),b1) ((_,a2),b2) = compare a1 a2 `mappend` compare (basePos b1) (basePos b2)
                    grouper ((_,a1),b1) ((_,a2),b2) = a1==a2 && basePos b1 == basePos b2
                    orbitGroups = groupBy grouper . sortBy sorter . catMaybes $ mos
                mapM_ compressGroup orbitGroups
          mapM_ compressOrbit orbitTags
        findTrans s1 s2 did did' dt' dtrans offset prev' input' =   do
          
          
          when (not (null orbitTags) && (offset `rem` 100 == 99)) (compressOrbits s1 did offset)
          
          let findTransTo (destIndex,sources) | IMap.null sources =
                set which destIndex ((1,Instructions { newPos = [(0,SetPost)], newOrbits = Nothing })
                                    ,blank_pos blank,mempty)
                                              | otherwise = do
                let prep (sourceIndex,(_dopa,instructions)) =  do
                      pos <- maybe (err $ "findTrans,1 : "++show (sourceIndex,destIndex,did')) return
                               =<< m_pos s1 !! sourceIndex
                      orbit <- m_orbit s1 !! sourceIndex
                      let orbit' = maybe orbit (\ f -> f offset orbit) (newOrbits instructions)
                      return ((sourceIndex,instructions),pos,orbit')
                    challenge x1@((_si1,ins1),_p1,_o1) x2@((_si2,ins2),_p2,_o2) =  do
                      check <- comp offset x1 (newPos ins1) x2 (newPos ins2)
                      if check==LT then return x2 else return x1
                (first:rest) <- mapM prep (IMap.toList sources)
                set which destIndex =<< foldM challenge first rest
          let dl = IMap.toList dtrans
          mapM_ findTransTo dl
          
          let performTransTo (destIndex,_) =  do
                x@((sourceIndex,_instructions),_pos,_orbit') <- which !! destIndex
                if sourceIndex == (1)
                  then spawnStart b_tags blank destIndex s2 (succ offset)
                  else updateCopy x offset s2 destIndex
          earlyStart <- fmap minimum $ mapM performTransTo dl
          
          earlyWin <- readSTRef (mq_earliest winQ)
          if earlyWin < earlyStart 
            then do
              winners <- fmap (foldl' (\ rest ws -> ws : rest) []) $
                           getMQ earlyStart winQ
              writeSTRef storeNext (next s2 s1 did' dt' (succ offset) prev' input')
              mapM (tagsToGroupsST aGroups) winners
            else do
              let offset' = succ offset in seq offset' $ next s2 s1 did' dt' offset' prev' input'
        
        processWinner s1 did dt w offset =  do
          let prep x@(sourceIndex,instructions) =  do
                pos <- maybe (err "newWinnerThenProceed,1") return =<< m_pos s1 !! sourceIndex
                startPos <- pos !! 0
                orbit <- m_orbit s1 !! sourceIndex
                let orbit' = maybe orbit (\ f -> f offset orbit) (newOrbits instructions)
                return (startPos,(x,pos,orbit'))
              challenge x1@((_si1,ins1),_p1,_o1) x2@((_si2,ins2),_p2,_o2) =  do
                check <- comp offset x1 (newPos ins1) x2 (newPos ins2)
                if check==LT then return x2 else return x1
          prep'd <- mapM prep (IMap.toList w)
          let (emptyFalse,emptyTrue) = partition ((offset >) . fst) prep'd
          mayID <- 
                   case map snd emptyFalse of
                    [] -> return Nothing
                    (first:rest) -> do
                      best@((_sourceIndex,_instructions),bp,_orbit') <- foldM challenge first rest
                      newWinner offset best
                      startWin <- bp !! 0
                      let states = ISet.toAscList did
                          keepState i1 = do
                            pos <- maybe (err "newWinnerThenProceed,2") return =<< m_pos s1 !! i1
                            startsAt <- pos !! 0
                            let keep = (startsAt <= startWin) || (offset <= startsAt)
                            when (not keep) $ do
                              writeSTRef eliminatedStateFlag True
                              when (i1 == startState) (writeSTRef eliminatedRespawnFlag True)
                            return keep
                      states' <- filterM keepState states
                      changed <- readSTRef eliminatedStateFlag
                      if changed then return (Just states') else return Nothing
          case emptyTrue of
            [] -> case IMap.lookup startState w of
                   Nothing -> return ()
                   Just ins -> winEmpty offset ins
            [first] -> newWinner offset (snd first)
            _ -> err "newWinnerThenProceed,3 : too many emptyTrue values"
          case mayID of
            Nothing -> return (did,dt) 
            Just states' -> do
              writeSTRef eliminatedStateFlag False
              respawn <- readSTRef eliminatedRespawnFlag
              DFA {d_id=did',d_dt=dt'} <-
                if respawn
                  then do
                    writeSTRef eliminatedRespawnFlag False
                    _ <- spawnStart b_tags blank startState s1 (succ offset)
                    return (Trie.lookupAsc trie (sort (states'++[startState])))
                  else return (Trie.lookupAsc trie states')
              return (did',dt')
        winEmpty preTag winInstructions =  do
          newerPos <- newA_ b_tags
          copySTU (blank_pos blank) newerPos
          set newerPos 0 preTag
          doActions preTag newerPos (newPos winInstructions)
          putMQ (WScratch newerPos) winQ
                
        newWinner preTag ((_sourceIndex,winInstructions),oldPos,_newOrbit) =  do
          newerPos <- newA_ b_tags
          copySTU oldPos newerPos
          doActions preTag newerPos (newPos winInstructions)
          putMQ (WScratch newerPos) winQ
        finalizeWinners = do
          winners <- fmap (foldl' (\ rest mqa -> mqa_ws mqa : rest) []) $
                       readSTRef (mq_list winQ) 
          resetMQ winQ
          writeSTRef storeNext (return [])
          mapM (tagsToGroupsST aGroups) winners
    
    next s1In s2In didIn dtIn offsetIn prevIn inputIn
doActions :: Position -> STUArray s Tag Position -> [(Tag, Action)] -> ST s ()
doActions preTag pos ins = mapM_ doAction ins where
  postTag = succ preTag
  doAction (tag,SetPre) = set pos tag preTag
  doAction (tag,SetPost) = set pos tag postTag
  doAction (tag,SetVal v) = set pos tag v
mkTest :: Uncons text => Bool -> WhichTest -> Index -> Char -> text -> Bool
mkTest isMultiline = if isMultiline then test_multiline else test_singleline
data MQA s = MQA {mqa_start :: !Position, mqa_ws :: !(WScratch s)}
data MQ s = MQ { mq_earliest :: !(STRef s Position)
               , mq_list :: !(STRef s [MQA s])
               }
newMQ :: S.ST s (MQ s)
newMQ = do
  earliest <- newSTRef maxBound
  list <- newSTRef []
  return (MQ earliest list)
resetMQ :: MQ s -> S.ST s ()
resetMQ (MQ {mq_earliest=earliest,mq_list=list}) = do
  writeSTRef earliest maxBound
  writeSTRef list []
putMQ :: WScratch s -> MQ s -> S.ST s ()
putMQ ws (MQ {mq_earliest=earliest,mq_list=list}) = do
  start <- w_pos ws !! 0
  let mqa = MQA start ws
  startE <- readSTRef earliest
  if start <= startE
    then writeSTRef earliest start >> writeSTRef list [mqa]
    else do
  old <- readSTRef list
  let !rest = dropWhile (\ m -> start <= mqa_start m) old 
      !new = mqa : rest
  writeSTRef list new
getMQ :: Position -> MQ s -> ST s [WScratch s]
getMQ pos (MQ {mq_earliest=earliest,mq_list=list}) = do
  old <- readSTRef list
  case span (\m -> pos <= mqa_start m) old of
    ([],ans) -> do
      writeSTRef earliest maxBound
      writeSTRef list []
      return (map mqa_ws ans)
    (new,ans) -> do
      writeSTRef earliest (mqa_start (last new))
      writeSTRef list new
      return (map mqa_ws ans)
data SScratch s = SScratch { _s_1 :: !(MScratch s)
                           , _s_2 :: !(MScratch s)
                           , _s_rest :: !( MQ s
                                        , BlankScratch s
                                        , STArray s Index ((Index,Instructions),STUArray s Tag Position,OrbitLog)
                                        )
                           }
data MScratch s = MScratch { m_pos :: !(STArray s Index (Maybe (STUArray s Tag Position)))
                           , m_orbit :: !(STArray s Index OrbitLog)
                           }
newtype BlankScratch s = BlankScratch { blank_pos :: (STUArray s Tag Position)
                                      }
newtype WScratch s = WScratch { w_pos :: (STUArray s Tag Position)
                              }
newA :: (MArray (STUArray s) e (ST s)) => (Tag,Tag) -> e -> S.ST s (STUArray s Tag e)
newA b_tags initial = newArray b_tags initial
newA_ :: (MArray (STUArray s) e (ST s)) => (Tag,Tag) -> S.ST s (STUArray s Tag e)
newA_ b_tags = newArray_ b_tags
newScratch :: (Index,Index) -> (Tag,Tag) -> S.ST s (SScratch s)
newScratch b_index b_tags = do
  s1 <- newMScratch b_index
  s2 <- newMScratch b_index
  winQ <- newMQ
  blank <- fmap BlankScratch (newA b_tags (1))
  which <- (newArray b_index ((1,err "newScratch which 1"),err "newScratch which 2",err "newScratch which 3"))
  return (SScratch s1 s2 (winQ,blank,which))
newMScratch :: (Index,Index) -> S.ST s (MScratch s)
newMScratch b_index = do
  pos's <- newArray b_index Nothing
  orbit's <- newArray b_index mempty
  return (MScratch pos's orbit's)
newtype F s = F ([F s] -> C s)
type C s = Position
	  -> ((Int, Instructions), STUArray s Tag Position, IntMap Orbits)
	  -> [(Int, Action)]
	  -> ((Int, Instructions), STUArray s Tag Position, IntMap Orbits)
	  -> [(Int, Action)]
	  -> ST s Ordering
orderOf :: Action -> Action -> Ordering
orderOf post1 post2 =
  case (post1,post2) of
    (SetPre,SetPre) -> EQ
    (SetPost,SetPost) -> EQ
    (SetPre,SetPost) -> LT
    (SetPost,SetPre) -> GT
    (SetVal v1,SetVal v2) -> compare v1 v2
    _ -> err $ "bestTrans.compareWith.choose sees incomparable "++show (post1,post2)
ditzyComp'3 :: forall s. Array Tag OP -> C s
ditzyComp'3 aTagOP = comp0 where
  (F comp1:compsRest) = allcomps 1
  comp0 :: C s
  comp0 preTag x1@(_state1,pos1,_orbit1') np1 x2@(_state2,pos2,_orbit2') np2 = do
    c <- liftM2 compare (pos2!!0) (pos1!!0) 
    case c of
      EQ -> comp1 compsRest preTag x1 np1 x2 np2
      answer -> return answer
  allcomps :: Tag -> [F s]
  allcomps tag | tag > top = [F (\ _ _ _ _ _ _ -> return EQ)]
               | otherwise = 
    case aTagOP ! tag of
      Orbit -> F (challenge_Orb tag) : allcomps (succ tag)
      Maximize -> F (challenge_Max tag) : allcomps (succ tag)
      Ignore -> F (challenge_Ignore tag) : allcomps (succ tag)
      Minimize -> err "allcomps Minimize"
   where top = snd (bounds aTagOP)
  challenge_Ignore !tag (F next:comps) preTag x1 np1 x2 np2 =
    case np1 of
      ((t1,_):rest1) | t1==tag ->
        case np2 of
          ((t2,_):rest2) | t2==tag -> next comps preTag x1 rest1 x2 rest2
          _ -> next comps preTag x1 rest1 x2 np2
      _ -> do
        case np2 of
          ((t2,_):rest2) | t2==tag -> next comps preTag x1 np1 x2 rest2
          _ ->  next comps preTag x1 np1 x2 np2
  challenge_Ignore _ [] _ _ _ _ _ = err "impossible 2347867"
  challenge_Max !tag (F next:comps) preTag x1@(_state1,pos1,_orbit1') np1 x2@(_state2,pos2,_orbit2') np2 =
    case np1 of
      ((t1,b1):rest1) | t1==tag ->
        case np2 of
          ((t2,b2):rest2) | t2==tag ->
            if b1==b2 then next comps preTag x1 rest1 x2 rest2
              else return (orderOf b1 b2)
          _ -> do
            p2 <- pos2 !! tag
            let p1 = case b1 of SetPre -> preTag
                                SetPost -> succ preTag
                                SetVal v -> v
            if p1==p2 then next comps preTag x1 rest1 x2 np2
              else return (compare p1 p2)
      _ -> do
        p1 <- pos1 !! tag
        case np2 of
          ((t2,b2):rest2) | t2==tag -> do
            let p2 = case b2 of SetPre -> preTag
                                SetPost -> succ preTag
                                SetVal v -> v
            if p1==p2 then next comps preTag x1 np1 x2 rest2
              else return (compare p1 p2)
          _ -> do
            p2 <- pos2 !! tag
            if p1==p2 then next comps preTag x1 np1 x2 np2
              else return (compare p1 p2)
  challenge_Max _ [] _ _ _ _ _ = err "impossible 9384324"
  challenge_Orb !tag (F next:comps) preTag x1@(_state1,_pos1,orbit1') np1 x2@(_state2,_pos2,orbit2') np2 = 
    let s1 = IMap.lookup tag orbit1'
        s2 = IMap.lookup tag orbit2'
    in case (s1,s2) of
         (Nothing,Nothing) -> next comps preTag x1 np1 x2 np2
         (Just o1,Just o2) | inOrbit o1 == inOrbit o2 ->
            case compare (ordinal o1) (ordinal o2) `mappend`
                 comparePos (viewl (getOrbits o1)) (viewl (getOrbits o2)) of
              EQ -> next comps preTag x1 np1 x2 np2
              answer -> return answer
         _ -> err $ unlines [ "challenge_Orb is too stupid to handle mismatched orbit data :"
                           , show(tag,preTag,np1,np2)
                           , show s1
                           , show s2
                           ]
  challenge_Orb _ [] _ _ _ _ _ = err "impossible 0298347"
comparePos :: (ViewL Position) -> (ViewL Position) -> Ordering
comparePos EmptyL EmptyL = EQ
comparePos EmptyL _      = GT
comparePos _      EmptyL = LT
comparePos (p1 :< ps1) (p2 :< ps2) = 
  compare p1 p2 `mappend` comparePos (viewl ps1) (viewl ps2)
tagsToGroupsST :: forall s. Array GroupIndex [GroupInfo] -> WScratch s -> S.ST s MatchArray
tagsToGroupsST aGroups (WScratch {w_pos=pos})= do
  let b_max = snd (bounds (aGroups))
  ma <- newArray (0,b_max) (1,0) :: ST s (STArray s Int (MatchOffset,MatchLength))
  startPos0 <- pos !! 0
  stopPos0 <- pos !! 1
  set ma 0 (startPos0,stopPos0startPos0)
  let act _this_index [] = return ()
      act this_index ((GroupInfo _ parent start stop flagtag):gs) = do
        flagVal <- pos !! flagtag
        if (1) == flagVal then act this_index gs
          else do
        startPos <- pos !! start
        stopPos <- pos !! stop
        (startParent,lengthParent) <- ma !! parent
        let ok = (0 <= startParent &&
                  0 <= lengthParent &&
                  startParent <= startPos &&
                  stopPos <= startPos + lengthParent)
        if not ok then act this_index gs
          else set ma this_index (startPos,stopPosstartPos)
  forM_ (range (1,b_max)) $ (\i -> act i (aGroups!i))
  unsafeFreeze ma
spawnStart :: (Tag,Tag) -> BlankScratch s -> Index -> MScratch s -> Position -> S.ST s Position
spawnStart b_tags (BlankScratch blankPos) i s1 thisPos = do
  oldPos <- m_pos s1 !! i
  pos <- case oldPos of
           Nothing -> do
             pos' <- newA_ b_tags
             set (m_pos s1) i (Just pos')
             return pos'
           Just pos -> return pos
  copySTU blankPos pos
  set (m_orbit s1) i $! mempty
  set pos 0 thisPos
  return thisPos
updateCopy :: ((Index, Instructions), STUArray s Tag Position, OrbitLog)
           -> Index
           -> MScratch s
           -> Int
           -> ST s Position
updateCopy ((_i1,instructions),oldPos,newOrbit) preTag s2 i2 = do
  b_tags <- getBounds oldPos
  newerPos <- maybe (do
    a <- newA_ b_tags
    set (m_pos s2) i2 (Just a)
    return a) return =<< m_pos s2 !! i2
  copySTU oldPos newerPos
  doActions preTag newerPos (newPos instructions)
  set (m_orbit s2) i2 $! newOrbit
  newerPos !! 0
foreign import ccall unsafe "memcpy"
    memcpy :: MutableByteArray# RealWorld -> MutableByteArray# RealWorld -> Int# -> IO ()
copySTU :: (Show i,Ix i,MArray (STUArray s) e (S.ST s)) => STUArray s i e -> STUArray s i e -> S.ST s () 
copySTU _souce@(STUArray _ _ _ msource) _destination@(STUArray _ _ _ mdest) =
  ST $ \s1# ->
    case sizeofMutableByteArray# msource        of { n# ->
    case unsafeCoerce# memcpy mdest msource n# s1# of { (# s2#, () #) ->
    (# s2#, () #) }}