{-# LANGUAGE UnicodeSyntax #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE FunctionalDependencies #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE OverlappingInstances #-} ------------------------------------------------------------------------------- -- | -- Module : Control.Monad.Trans.Region.Internal -- Copyright : (c) 2009 Bas van Dijk -- License : BSD3 (see the file LICENSE) -- Maintainer : Bas van Dijk -- -- This modules implements a technique called /"Lightweight monadic regions"/ -- invented by Oleg Kiselyov and Chung-chieh Shan -- -- See: -- -- This module should only be used by library authors wishing to allow their -- users to open their type of resources in a region. It should not be used by -- end-users directly! -- -- To create a module or library that allows your users to open your type of -- resources in a region is to define an instance for 'Resource' for your type -- of resource. -- -- Make sure not to re-export anything from this module. Either re-export things -- from @Control.Monad.Trans.Region@ or tell your users to import that module -- directly. -- -------------------------------------------------------------------------------- module Control.Monad.Trans.Region.Internal ( -- * Scarce resources Resource , Handle , openResource , closeResource -- * Regions , RegionT -- * Running regions , runRegionT , TopRegion , runTopRegion , forkTopRegion -- * Opening resources , RegionalHandle , internalHandle , open , with -- * Duplication , Dup , dup -- * Handy functions for writing monadic instances , mapRegionT , liftCatch -- | /TODO: define and export: /@liftCallCC@ -- * Parent/child relationship between regions. , ParentOf ) where -------------------------------------------------------------------------------- -- Imports -------------------------------------------------------------------------------- -- from base: import Control.Concurrent ( forkIO, ThreadId ) import Control.Applicative ( Applicative, Alternative ) import Control.Monad ( when, liftM2, MonadPlus ) import Control.Monad.Fix ( MonadFix ) import Data.IORef ( IORef, newIORef , readIORef, modifyIORef, atomicModifyIORef ) -- from MonadCatchIO-transformers: import Control.Monad.CatchIO ( MonadCatchIO, block, bracket ) -- from transformers: import Control.Monad.Trans ( MonadTrans, lift, MonadIO, liftIO ) import qualified Control.Monad.Trans.Reader as Reader ( liftCatch ) import Control.Monad.Trans.Reader ( ReaderT , ask , runReaderT, mapReaderT ) -- from unicode-symbols: import Prelude.Unicode ( (∘), (≡) ) -------------------------------------------------------------------------------- -- * Scarce resources -------------------------------------------------------------------------------- {-| Class of /scarce/ resources. A scarce resource is a resource that only one user can use at a time. (like a file, memory pointer or USB device for example). Because of the scarcity, these resources need to be /opened/ to grant temporary sole access to the resource. When the resource is no longer needed it should be /closed/ a.s.a.p to grant others access to the resource. -} class Resource resource where data Handle resource ∷ * openResource ∷ resource → IO (Handle resource) closeResource ∷ Handle resource → IO () -------------------------------------------------------------------------------- -- * Regions -------------------------------------------------------------------------------- {-| A monad transformer in which resources of type @resource@ can be opened which are automatically closed when the region terminates. Note that regions can be nested. @pr@ (for parent region) is a monad which is usually the region which is running this region. However when you are running a 'TopRegion' the parent region will be 'IO'. -} newtype RegionT resource s (pr ∷ * → *) α = RegionT { unRegionT :: ReaderT (IORef [Opened resource]) pr α } deriving ( Functor , Applicative , Alternative , Monad , MonadPlus , MonadFix , MonadTrans , MonadIO , MonadCatchIO ) data Opened resource = Opened { openedHandle ∷ Handle resource , refCntIORef ∷ IORef Int } decrement ∷ IORef Int → IO Int decrement ioRef = atomicModifyIORef ioRef $ \refCnt → let predRefCnt = pred refCnt in (predRefCnt, predRefCnt) increment ∷ IORef Int → IO () increment ioRef = atomicModifyIORef ioRef $ \refCnt → (succ refCnt, ()) -------------------------------------------------------------------------------- -- * Running regions -------------------------------------------------------------------------------- {-| Execute a region inside its parent region @pr@. All resources which have been opened in the given region using 'open', and which haven't been duplicated using 'dup', will be closed on exit from this function wether by normal termination or by raising an exception. Also all resources which have been duplicated to this region from a child region are closed on exit if they haven't been duplicated themselves. Note the type variable @s@ of the region wich is only quantified over the region itself. This ensures that /all/ values, having a type containing @s@, can /not/ be returned from this function. (Note the similarity with the @ST@ monad.) An example of such a value is a 'RegionalHandle'. Regional handles are created by opening a resource in a region using 'open'. Regional handles are parameterized by the region in which they were created. So regional handles have this @s@ in their type. This ensures that these regional handles, which may have been closed on exit from this function, can't be returned from this function. This ensures you can never do any IO with a closed regional handle. Note that it is possible to run a region inside another region. -} runRegionT ∷ (Resource resource, MonadCatchIO pr) ⇒ (∀ s. RegionT resource s pr α) -- ^ Region you wish to execute. → pr α -- ^ Computation in the parent region which executes the given -- region. runRegionT m = runRegionWith [] m {-| A region which has 'IO' as its parent region which enables it to be: * directly executed in 'IO' by 'runTopRegion', * concurrently executed in a new thread by 'forkTopRegion'. -} type TopRegion resource s = RegionT resource s IO {-| Convenience funtion for running a /top-level/ region in 'IO'. Note that: @runTopRegion = 'runRegionT'@ -} runTopRegion ∷ Resource resource ⇒ (∀ s. TopRegion resource s α) -- ^ /Top-level/ region you wish to execute. → IO α -- ^ An @IO@ computation which executes the given region. runTopRegion = runRegionT {-| Return a region which executes the given /top-level/ region in a new thread. Note that the forked region has the same type variable @s@ as the resulting region. This means that all values which can be referenced in the resulting region (like 'RegionalHandle's for example) can also be referenced in the forked region. For example the following is allowed: @ runRegionT $ do regionalHndl <- open resource threadId <- forkTopRegion $ doSomethingWith regionalHndl doSomethingElseWith regionalHndl @ Note that the @regionalHndl@ and all other resources opened in the current thread are closed only when the current thread or the forked thread terminates whichever comes /last/. -} forkTopRegion ∷ (Resource resource, MonadIO pr) ⇒ TopRegion resource s () -- ^ /Top-level/ region you wish to -- execute in a new thread. → RegionT resource s pr ThreadId -- ^ A regional computation that executes the given region in a -- new thread and returns the @ThreadId@ of this new thread. forkTopRegion m = RegionT $ do openedResourcesIORef ← ask liftIO $ do openedResources ← readIORef openedResourcesIORef block $ do mapM_ (increment ∘ refCntIORef) openedResources forkIO $ runRegionWith openedResources m runRegionWith ∷ ∀ resource s pr α. (MonadCatchIO pr, Resource resource) ⇒ [Opened resource] → RegionT resource s pr α → pr α runRegionWith openedResources m = bracket (liftIO $ newIORef openedResources) (\openedResourcesIORef → liftIO $ readIORef openedResourcesIORef >>= mapM_ closeOpenedResource) (runReaderT $ unRegionT m) where closeOpenedResource ∷ Opened resource → IO () closeOpenedResource openedResource = do refCnt ← decrement $ refCntIORef openedResource when (refCnt ≡ 0) $ closeResource $ openedHandle $ openedResource -------------------------------------------------------------------------------- -- * Opening resources -------------------------------------------------------------------------------- -- | A handle to an opened resource parameterized by the @resource@ and the -- region @r@ in which it was created. newtype RegionalHandle resource (r ∷ * → *) = RegionalHandle { unRegionalHandle ∷ Opened resource } {-| Get the internal handle from the regional handle. This function should not be exported to end-users because it allows them to close the handle manually! -} internalHandle ∷ RegionalHandle resource r → Handle resource internalHandle = openedHandle ∘ unRegionalHandle {-| Open the given resource in a region yielding a regional handle to it. Note that the returned regional handle is parameterized by the region in which it was created. This ensures that regional handles can never escape their region. And it also allows operations on regional handles to be executed in a child region of the region in which the regional handle was created. Note that if you wish to return a regional handle from the region in which it was created you have to duplicate the handle by applying 'dup' to it. -} open ∷ (Resource resource, MonadCatchIO pr) ⇒ resource -- ^ The resource you wish to open. → RegionT resource s pr (RegionalHandle resource (RegionT resource s pr)) -- ^ A regional computation that returns a regional handle to the given -- opened resource parameterized by the region itself. open resource = RegionT $ block $ do openedResource ← liftIO $ liftM2 Opened (openResource resource) (newIORef 1) registerOpenedResource openedResource return $ RegionalHandle openedResource {-| A convenience function which opens the given resource, applies the given continuation function to the resulting regional handle and runs the resulting region. Note that: @with dev f = @'runRegionT'@ (@'open'@ dev @'>>='@ f)@ -} with ∷ (Resource resource, MonadCatchIO pr) ⇒ resource -- ^ The resource you wish to open. → (∀ s. RegionalHandle resource (RegionT resource s pr) → RegionT resource s pr α ) -- ^ Continuation function. → pr α -- ^ A computation which runs a child region which opens the given -- resource and applies the given continuation function to the -- resulting regional handle. with resource f = runRegionT $ open resource >>= f registerOpenedResource ∷ (Resource resource, MonadIO pr1) ⇒ Opened resource → ReaderT (IORef [Opened resource]) pr1 () registerOpenedResource openedResource = do openedResourcesIORef ← ask liftIO $ modifyIORef openedResourcesIORef (openedResource:) -------------------------------------------------------------------------------- -- * Duplication -------------------------------------------------------------------------------- {-| Duplicate an @α@ in the parent region. This @α@ will usually be a @(@'RegionalHandle'@ resource)@ but it can be any value \"derived\" from this regional handle. For example, suppose you run the following region: @ runRegionT $ do @ Inside this region you run a nested /child/ region like: @ r1hDup <- runRegionT $ do @ Now in this child region you open the resource @r1@: @ r1h <- open r1 @ ...yielding the regional handle @r1h@. Note that: @r1h :: RegionalHandle resource (RegionT resource cs (RegionT resource ps ppr))@ where @cs@ is bound by the inner (child) @runRegionT@ and @ps@ is bound by the outer (parent) @runRegionT@. Suppose you want to use the resulting regional handle @r1h@ in the /parent/ device region. You can't simply @return r1h@ because then the type variable @cs@, escapes the inner region. However, if you duplicate the regional handle you can safely return it. @ r1hDup <- dup r1h return r1hDup @ Note that @r1hDup :: RegionalHandle resource (RegionT resource ps ppr)@ Back in the parent region you can safely operate on @r1hDup@. -} class Resource resource ⇒ Dup α resource where dup ∷ (MonadCatchIO ppr) ⇒ α (RegionT resource cs (RegionT resource ps ppr)) -- ^ Something created in a child region. → RegionT resource cs (RegionT resource ps ppr) (α (RegionT resource ps ppr))-- ^ The child region which returns the thing which can now be used in the parent region. instance Resource resource ⇒ Dup (RegionalHandle resource) resource where dup (RegionalHandle openedResource) = RegionT $ block $ do liftIO $ increment $ refCntIORef openedResource lift $ RegionT $ registerOpenedResource openedResource return $ RegionalHandle openedResource -------------------------------------------------------------------------------- -- * Handy functions for writing monadic instances -------------------------------------------------------------------------------- -- TODO: -- -- | Lift a @callCC@ operation to the new monad. -- liftCallCC ∷ (((α → pr β) → pr α) → pr α) -- ^ @callCC@ on the argument monad. -- → ((α → RegionT s pr β) → RegionT s pr α) -- → RegionT s pr α -- liftCallCC callCC f = RegionT $ ??? -- | Transform the computation inside a region. mapRegionT ∷ (m α → n β) → RegionT resource s m α → RegionT resource s n β mapRegionT f = RegionT ∘ mapReaderT f ∘ unRegionT -- | Lift a 'catchError' operation to the new monad. liftCatch ∷ (pr α → (e → pr α) → pr α) -- ^ @catch@ on the argument monad. → RegionT resource s pr α -- ^ Computation to attempt. → (e → RegionT resource s pr α) -- ^ Exception handler. → RegionT resource s pr α liftCatch f m h = RegionT $ Reader.liftCatch f (unRegionT m) (unRegionT ∘ h) -------------------------------------------------------------------------------- -- * Parent/child relationship between regions. -------------------------------------------------------------------------------- {-| The @ParentOf@ class declares the parent/child relationship between regions. A region is the parent of another region if they're either equivalent like: @ RegionT resource ps pr \`ParentOf\` RegionT resource ps pr @ or if it is the parent of the parent of the child like: @ RegionT resource ps ppr \`ParentOf\` RegionT resource cs (RegionT resource pcs (RegionT resource ppcs (RegionT resource ps ppr))) @ -} class (Monad pr, Monad cr) ⇒ pr `ParentOf` cr instance Monad r ⇒ ParentOf r r instance ( Monad cr , cr `TypeCast2` RegionT resource s pcr , pr `ParentOf` pcr ) ⇒ ParentOf pr cr -------------------------------------------------------------------------------- -- Type casting -------------------------------------------------------------------------------- class TypeCast2 (a ∷ * → *) (b ∷ * → *) | a → b, b → a class TypeCast2' t (a ∷ * → *) (b ∷ * → *) | t a → b, t b → a class TypeCast2'' t (a ∷ * → *) (b ∷ * → *) | t a → b, t b → a instance TypeCast2' () a b ⇒ TypeCast2 a b instance TypeCast2'' t a b ⇒ TypeCast2' t a b instance TypeCast2'' () a a -- The End ---------------------------------------------------------------------