-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Generic programming library for regular datatypes.
--
-- This package provides generic functionality for regular datatypes.
-- Regular datatypes are recursive datatypes such as lists, binary trees,
-- etc. This library cannot be used with mutually recursive datatypes or
-- with nested datatypes. The multirec library [1] can deal with mutually
-- recursive datatypes.
--
-- This library has been described in the paper:
--
--
-- - A Lightweight Approach to Datatype-Generic Rewriting.
-- Thomas van Noort, Alexey Rodriguez, Stefan Holdermans, Johan Jeuring,
-- Bastiaan Heeren. ACM SIGPLAN Workshop on Generic Programming
-- 2008.
--
--
-- More information about this library can be found at
-- http://www.cs.uu.nl/wiki/GenericProgramming/Regular.
--
-- [1]
-- http://hackage.haskell.org/cgi-bin/hackage-scripts/package/multirec
@package regular
@version 0.1
-- | Summary: Representation for constructors.
module Generics.Regular.Constructor
-- | Class for datatypes that represent data constructors. For non-symbolic
-- constructors, only conName has to be defined. The weird
-- argument is supposed to be instantiated with C from base, hence the
-- complex kind.
class Constructor c
conName :: (Constructor c) => t c (f :: * -> *) r -> String
conFixity :: (Constructor c) => t c (f :: * -> *) r -> Fixity
-- | Datatype to represent the fixity of a constructor. An infix
-- declaration directly corresponds to an application of Infix.
data Fixity
Prefix :: Fixity
Infix :: Associativity -> Int -> Fixity
data Associativity
LeftAssociative :: Associativity
RightAssociative :: Associativity
NotAssociative :: Associativity
instance Eq Associativity
instance Show Associativity
instance Ord Associativity
instance Read Associativity
instance Eq Fixity
instance Show Fixity
instance Ord Fixity
instance Read Fixity
-- | Summary: Types for structural representation.
module Generics.Regular.Base
-- | Structure type for constant values.
data K a r
K :: a -> K a r
unK :: K a r -> a
-- | Structure type for recursive values.
data I r
I :: r -> I r
unI :: I r -> r
-- | Structure type for empty constructors.
data U r
U :: U r
-- | Structure type for alternatives in a type.
data (:+:) f g r
L :: (f r) -> :+: f g r
R :: (g r) -> :+: f g r
-- | Structure type for fields of a constructor.
data (:*:) f g r
(:*:) :: f r -> g r -> :*: f g r
-- | Structure type to store the name of a constructor.
data C c f r
C :: f r -> C c f r
unC :: C c f r -> f r
-- | Class for datatypes that represent data constructors. For non-symbolic
-- constructors, only conName has to be defined. The weird
-- argument is supposed to be instantiated with C from base, hence the
-- complex kind.
class Constructor c
conName :: (Constructor c) => t c (f :: * -> *) r -> String
conFixity :: (Constructor c) => t c (f :: * -> *) r -> Fixity
-- | Datatype to represent the fixity of a constructor. An infix
-- declaration directly corresponds to an application of Infix.
data Fixity
Prefix :: Fixity
Infix :: Associativity -> Int -> Fixity
data Associativity
LeftAssociative :: Associativity
RightAssociative :: Associativity
NotAssociative :: Associativity
-- | The well-known fixed-point type.
newtype Fix f
In :: (f (Fix f)) -> Fix f
-- | The type class Regular captures the structural representation
-- of a type and the corresponding embedding-projection pairs.
--
-- To be able to use the generic functions, the user is required to
-- provide an instance of this type class.
class Regular a
from :: (Regular a) => a -> PF a a
to :: (Regular a) => PF a a -> a
-- | The type family PF represents the pattern functor of a
-- datatype.
--
-- To be able to use the generic functions, the user is required to
-- provide an instance of this type family.
instance (Functor f) => Functor (C c f)
instance (Functor f, Functor g) => Functor (f :*: g)
instance (Functor f, Functor g) => Functor (f :+: g)
instance Functor U
instance Functor (K a)
instance Functor I
-- | Summary: Generic functionality for regular dataypes: mapM, flatten,
-- zip, equality, show, value generation and fold.
module Generics.Regular.Functions
-- | The GMap class defines a monadic functorial map.
class GMap f
fmapM :: (GMap f, Monad m) => (a -> m b) -> f a -> m (f b)
-- | The CrushR class defines a right-associative crush on
-- functorial values.
class CrushR f
crushr :: (CrushR f) => (a -> b -> b) -> b -> f a -> b
-- | Flatten a structure by collecting all the elements present.
flatten :: (CrushR f) => f a -> [a]
-- | The Zip class defines a monadic zip on functorial values.
class Zip f
fzipM :: (Zip f, Monad m) => (a -> b -> m c) -> f a -> f b -> m (f c)
-- | Functorial zip with a non-monadic function, resulting in a monadic
-- value.
fzip :: (Zip f, Monad m) => (a -> b -> c) -> f a -> f b -> m (f c)
-- | Partial functorial zip with a non-monadic function.
fzip' :: (Zip f) => (a -> b -> c) -> f a -> f b -> f c
-- | Equality on values based on their structural representation.
geq :: (b ~ (PF a), Regular a, CrushR b, Zip b) => a -> a -> Bool
-- | The GShow class defines a show on values.
class GShow f
gshowf :: (GShow f) => (a -> ShowS) -> f a -> ShowS
gshow :: (Regular a, GShow (PF a)) => a -> ShowS
-- | The LRBase class defines two functions, leftb and
-- rightb, which should produce different values.
class LRBase a
leftb :: (LRBase a) => a
rightb :: (LRBase a) => a
-- | The LR class defines two functions, leftf and
-- rightf, which should produce different functorial values.
class LR f
leftf :: (LR f) => a -> f a
rightf :: (LR f) => a -> f a
-- | Produces a value which should be different from the value returned by
-- right.
left :: (Regular a, LR (PF a)) => a
-- | Produces a value which should be different from the value returned by
-- left.
right :: (Regular a, LR (PF a)) => a
type Algebra a r = Alg (PF a) r
-- | The class fold explains how to convert an algebra Alg into a
-- function from functor to result.
class Fold f :: (* -> *)
alg :: (Fold f) => Alg f r -> f r -> r
-- | Fold with convenient algebras.
fold :: (Regular a, Fold (PF a), Functor (PF a)) => Algebra a r -> a -> r
-- | For constructing algebras it is helpful to use this pairing
-- combinator.
(&) :: a -> b -> (a, b)
instance (Fold f) => Fold (C c f)
instance (Fold g) => Fold (I :*: g)
instance (Fold g) => Fold (K a :*: g)
instance (Fold f, Fold g) => Fold (f :+: g)
instance Fold I
instance Fold U
instance Fold (K a)
instance (LR f) => LR (C c f)
instance (LR f, LR g) => LR (f :*: g)
instance (LR f, LR g) => LR (f :+: g)
instance LR U
instance (LRBase a) => LR (K a)
instance LR I
instance (LRBase a) => LRBase [a]
instance LRBase Char
instance LRBase Integer
instance LRBase Int
instance (Constructor c, GShow f) => GShow (C c f)
instance (GShow f, GShow g) => GShow (f :*: g)
instance (GShow f, GShow g) => GShow (f :+: g)
instance GShow U
instance (Show a) => GShow (K a)
instance GShow I
instance (Zip f) => Zip (C c f)
instance (Zip f, Zip g) => Zip (f :*: g)
instance (Zip f, Zip g) => Zip (f :+: g)
instance Zip U
instance (Eq a) => Zip (K a)
instance Zip I
instance (CrushR f) => CrushR (C c f)
instance (CrushR f, CrushR g) => CrushR (f :*: g)
instance (CrushR f, CrushR g) => CrushR (f :+: g)
instance CrushR U
instance CrushR (K a)
instance CrushR I
instance (GMap f) => GMap (C c f)
instance (GMap f, GMap g) => GMap (f :*: g)
instance (GMap f, GMap g) => GMap (f :+: g)
instance GMap U
instance GMap (K a)
instance GMap I
-- | This module contains Template Haskell code that can be used to
-- automatically generate the boilerplate code for the regular library.
module Generics.Regular.TH
-- | Given a datatype name, derive datatypes and instances of class
-- Constructor.
deriveConstructors :: Name -> Q [Dec]
-- | Given the type and the name (as string) for the pattern functor to
-- derive, generate the Regular instance.
deriveRegular :: Name -> String -> Q [Dec]
-- | Derive only the PF instance. Not needed if deriveRegular
-- is used.
derivePF :: String -> Name -> Q [Dec]
instance Lift Associativity
instance Lift Fixity
-- | Summary: Top-level module for this library. By importing this module,
-- the user is able to use all the generic functionality. The user is
-- only required to provide an instance of Regular for the
-- datatype.
--
-- Consider a datatype representing logical expressions:
--
--
-- data Logic = Var String
-- | Logic :->: Logic -- implication
-- | Logic :<->: Logic -- equivalence
-- | Logic :&&: Logic -- and (conjunction)
-- | Logic :||: Logic -- or (disjunction)
-- | Not Logic -- not
-- | T -- true
-- | F -- false
--
--
-- An instance of Regular is derived with TH by invoking:
--
--
-- $(deriveConstructors ''Logic)
-- $(deriveRegular ''Logic "PFLogic")
-- type instance PF Logic = PFLogic
--
module Generics.Regular