-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Generic programming library for regular datatypes. -- -- This package provides generic functionality for regular datatypes. -- Regular datatypes are recursive datatypes such as lists, binary trees, -- etc. This library cannot be used with mutually recursive datatypes or -- with nested datatypes. The multirec library [1] can deal with mutually -- recursive datatypes. -- -- This library has been described in the paper: -- -- -- -- More information about this library can be found at -- http://www.cs.uu.nl/wiki/GenericProgramming/Regular. -- -- [1] http://hackage.haskell.org/package/multirec @package regular @version 0.3.1 -- | Summary: Representation for record selectors. module Generics.Regular.Selector class Selector s selName :: Selector s => t s (f :: * -> *) r -> String -- | Summary: Representation for constructors. module Generics.Regular.Constructor -- | Class for datatypes that represent data constructors. For non-symbolic -- constructors, only conName has to be defined. The weird -- argument is supposed to be instantiated with C from base, -- hence the complex kind. class Constructor c conName :: Constructor c => t c (f :: * -> *) r -> String conFixity :: Constructor c => t c (f :: * -> *) r -> Fixity conIsRecord :: Constructor c => t c (f :: * -> *) r -> Bool -- | Datatype to represent the fixity of a constructor. An infix -- declaration directly corresponds to an application of Infix. data Fixity Prefix :: Fixity Infix :: Associativity -> Int -> Fixity data Associativity LeftAssociative :: Associativity RightAssociative :: Associativity NotAssociative :: Associativity instance Eq Associativity instance Show Associativity instance Ord Associativity instance Read Associativity instance Eq Fixity instance Show Fixity instance Ord Fixity instance Read Fixity -- | Summary: Types for structural representation. module Generics.Regular.Base -- | Structure type for constant values. newtype K a r K :: a -> K a r unK :: K a r -> a -- | Structure type for recursive values. newtype I r I :: r -> I r unI :: I r -> r -- | Structure type for empty constructors. data U r U :: U r -- | Structure type for alternatives in a type. data (:+:) f g r L :: (f r) -> :+: f g r R :: (g r) -> :+: f g r -- | Structure type for fields of a constructor. data (:*:) f g r (:*:) :: f r -> g r -> :*: f g r -- | Structure type to store the name of a constructor. data C c f r C :: f r -> C c f r unC :: C c f r -> f r -- | Structure type to store the name of a record selector. data S l f r S :: f r -> S l f r unS :: S l f r -> f r -- | Class for datatypes that represent data constructors. For non-symbolic -- constructors, only conName has to be defined. The weird -- argument is supposed to be instantiated with C from base, -- hence the complex kind. class Constructor c conName :: Constructor c => t c (f :: * -> *) r -> String conFixity :: Constructor c => t c (f :: * -> *) r -> Fixity conIsRecord :: Constructor c => t c (f :: * -> *) r -> Bool -- | Datatype to represent the fixity of a constructor. An infix -- declaration directly corresponds to an application of Infix. data Fixity Prefix :: Fixity Infix :: Associativity -> Int -> Fixity data Associativity LeftAssociative :: Associativity RightAssociative :: Associativity NotAssociative :: Associativity class Selector s selName :: Selector s => t s (f :: * -> *) r -> String -- | The well-known fixed-point type. newtype Fix f In :: f (Fix f) -> Fix f out :: Fix f -> f (Fix f) -- | The type class Regular captures the structural representation -- of a type and the corresponding embedding-projection pairs. -- -- To be able to use the generic functions, the user is required to -- provide an instance of this type class. class Regular a from :: Regular a => a -> PF a a to :: Regular a => PF a a -> a -- | The type family PF represents the pattern functor of a -- datatype. -- -- To be able to use the generic functions, the user is required to -- provide an instance of this type family. instance Functor f => Functor (S c f) instance Functor f => Functor (C c f) instance (Functor f, Functor g) => Functor (f :*: g) instance (Functor f, Functor g) => Functor (f :+: g) instance Functor U instance Functor (K a) instance Functor I -- | This module contains Template Haskell code that can be used to -- automatically generate the boilerplate code for the regular library. module Generics.Regular.TH -- | Given the type and the name (as string) for the pattern functor to -- derive, generate the Constructor' instances, the Selector' instances -- and the Regular instance. deriveAll :: Name -> String -> Q [Dec] -- | Given a datatype name, derive datatypes and instances of class -- Constructor. deriveConstructors :: Name -> Q [Dec] -- | Given a datatype name, derive datatypes and instances of class -- Selector. deriveSelectors :: Name -> Q [Dec] -- | Given the type and the name (as string) for the pattern functor to -- derive, generate the Regular instance. deriveRegular :: Name -> String -> Q [Dec] -- | Derive only the PF instance. Not needed if deriveRegular -- is used. derivePF :: String -> Name -> Q [Dec] instance Lift Associativity instance Lift Fixity -- | Summary: Return the name of all the constructors of a type. module Generics.Regular.Functions.ConNames class ConNames f hconNames :: ConNames f => f a -> [String] -- | Return the name of all the constructors of the type of the given term. conNames :: (Regular a, ConNames (PF a)) => a -> [String] instance ConNames (K a) instance ConNames U instance ConNames I instance (ConNames f, ConNames g) => ConNames (f :*: g) instance (ConNames f, Constructor c) => ConNames (C c f) instance (ConNames f, ConNames g) => ConNames (f :+: g) -- | Summary: Generic crush. module Generics.Regular.Functions.Crush -- | The Crush class defines a right-associative crush on -- functorial values. class Crush f crush :: Crush f => Assoc -> (a -> b -> b) -> b -> f a -> b -- | Associativity of the binary operator used for crush data Assoc -- | Left-associative AssocLeft :: Assoc -- | Right-associative AssocRight :: Assoc -- | Flatten a structure by collecting all the elements present. flattenl :: Crush f => f a -> [a] flattenr :: Crush f => f a -> [a] crushr :: Crush f => (a -> b -> b) -> b -> f a -> b crushl :: Crush f => (a -> b -> b) -> b -> f a -> b instance Crush f => Crush (S s f) instance Crush f => Crush (C c f) instance (Crush f, Crush g) => Crush (f :*: g) instance (Crush f, Crush g) => Crush (f :+: g) instance Crush U instance Crush (K a) instance Crush I -- | Summary: Generic folding and unfolding. module Generics.Regular.Functions.Fold type Algebra a r = Alg (PF a) r -- | The class fold explains how to convert an algebra Alg into a -- function from functor to result. class Fold f :: (* -> *) alg :: Fold f => Alg f r -> f r -> r -- | Fold with convenient algebras. fold :: (Regular a, Fold (PF a), Functor (PF a)) => Algebra a r -> a -> r type CoAlgebra a s = s -> CoAlg (PF a) s -- | The class unfold explains how to convert a coalgebra CoAlg and -- a seed into a representation. class Unfold f :: (* -> *) coalg :: Unfold f => (s -> a) -> CoAlg f s -> f a unfold :: (Unfold (PF a), Regular a) => CoAlgebra a s -> s -> a -- | For constructing algebras it is helpful to use this pairing -- combinator. (&) :: a -> b -> (a, b) instance Unfold f => Unfold (S s f) instance Unfold f => Unfold (C c f) instance (Unfold f, Unfold g) => Unfold (f :*: g) instance (Unfold f, Unfold g) => Unfold (f :+: g) instance Unfold U instance Unfold I instance Unfold (K a) instance Fold f => Fold (S s f) instance Fold f => Fold (C c f) instance Fold g => Fold (I :*: g) instance Fold g => Fold (K a :*: g) instance (Fold f, Fold g) => Fold (f :+: g) instance Fold I instance Fold U instance Fold (K a) -- | Summary: Monadic generic map. module Generics.Regular.Functions.GMap -- | The Functor class is used for types that can be mapped over. -- Instances of Functor should satisfy the following laws: -- --
--   fmap id  ==  id
--   fmap (f . g)  ==  fmap f . fmap g
--   
-- -- The instances of Functor for lists, Data.Maybe.Maybe -- and System.IO.IO satisfy these laws. class Functor f :: (* -> *) fmap :: Functor f => (a -> b) -> f a -> f b -- | The GMap class defines a monadic functorial map. class GMap f fmapM :: (GMap f, Monad m) => (a -> m b) -> f a -> m (f b) instance GMap f => GMap (S s f) instance GMap f => GMap (C c f) instance (GMap f, GMap g) => GMap (f :*: g) instance (GMap f, GMap g) => GMap (f :+: g) instance GMap U instance GMap (K a) instance GMap I -- | Summary: Generic functionality for regular dataypes: mapM, flatten, -- zip, equality, show, value generation and fold. module Generics.Regular.Functions.LR -- | The LRBase class defines two functions, leftb and -- rightb, which should produce different values. class LRBase a leftb :: LRBase a => a rightb :: LRBase a => a -- | The LR class defines two functions, leftf and -- rightf, which should produce different functorial values. class LR f leftf :: LR f => a -> f a rightf :: LR f => a -> f a -- | Produces a value which should be different from the value returned by -- right. left :: (Regular a, LR (PF a)) => a -- | Produces a value which should be different from the value returned by -- left. right :: (Regular a, LR (PF a)) => a instance LR f => LR (S s f) instance LR f => LR (C c f) instance (LR f, LR g) => LR (f :*: g) instance (LR f, LR g) => LR (f :+: g) instance LR U instance LRBase a => LR (K a) instance LR I instance LRBase a => LRBase [a] instance LRBase Char instance LRBase Integer instance LRBase Int -- | Summary: Generic zip. module Generics.Regular.Functions.Zip -- | The Zip class defines a monadic zip on functorial values. class Zip f fzipM :: (Zip f, Monad m) => (a -> b -> m c) -> f a -> f b -> m (f c) -- | Functorial zip with a non-monadic function, resulting in a monadic -- value. fzip :: (Zip f, Monad m) => (a -> b -> c) -> f a -> f b -> m (f c) -- | Partial functorial zip with a non-monadic function. fzip' :: Zip f => (a -> b -> c) -> f a -> f b -> f c instance Zip f => Zip (S s f) instance Zip f => Zip (C c f) instance (Zip f, Zip g) => Zip (f :*: g) instance (Zip f, Zip g) => Zip (f :+: g) instance Zip U instance Eq a => Zip (K a) instance Zip I -- | Summary: All of the generic functionality for regular dataypes: mapM, -- flatten, zip, equality, value generation, fold and unfold. Generic -- show (Generics.Regular.Functions.Show), generic read -- (Generics.Regular.Functions.Read) and generic equality -- (Generics.Regular.Functions.Eq) are not exported to prevent -- clashes with Prelude. module Generics.Regular.Functions -- | Summary: Generic equality. module Generics.Regular.Functions.Eq class Eq f eqf :: Eq f => (a -> a -> Bool) -> f a -> f a -> Bool eq :: (Regular a, Eq (PF a)) => a -> a -> Bool instance Eq f => Eq (C c f) instance (Eq f, Eq g) => Eq (f :*: g) instance (Eq f, Eq g) => Eq (f :+: g) instance Eq U instance Eq a => Eq (K a) instance Eq I -- | Summary: Generic read. This module is not exported by -- Generics.Regular.Functions to avoid clashes with -- Prelude. module Generics.Regular.Functions.Read class Read f hreader :: Read f => ReadPrec a -> Bool -> ReadPrec (f a) read :: (Regular a, Read (PF a)) => String -> a readPrec :: (Regular a, Read (PF a)) => ReadPrec a readsPrec :: (Regular a, Read (PF a)) => Int -> ReadS a instance (Selector s, Read f) => Read (S s f) instance (Constructor c, CountAtoms f, CountAtoms g, Read f, Read g) => Read (C c (f :*: g)) instance (Constructor c, Read (S s f)) => Read (C c (S s f)) instance (Constructor c, Read (K a)) => Read (C c (K a)) instance (Constructor c, Read I) => Read (C c I) instance Constructor c => Read (C c U) instance (Read f, Read g) => Read (f :*: g) instance (Read f, Read g) => Read (f :+: g) instance Read I instance Read a => Read (K a) instance Read U instance CountAtoms f => CountAtoms (S s f) instance (CountAtoms f, CountAtoms g) => CountAtoms (f :*: g) instance CountAtoms I instance CountAtoms (K a) -- | Summary: Generic show. This module is not exported by -- Generics.Regular.Functions to avoid clashes with -- Prelude. module Generics.Regular.Functions.Show -- | The Show class defines a show on values. class Show f hshowsPrec :: Show f => (Int -> a -> ShowS) -> Bool -> Int -> f a -> ShowS show :: (Regular a, Show (PF a)) => a -> String shows :: (Regular a, Show (PF a)) => a -> ShowS instance (Selector s, Show f) => Show (S s f) instance (Constructor c, Show f) => Show (C c f) instance (Show f, Show g) => Show (f :*: g) instance (Show f, Show g) => Show (f :+: g) instance Show U instance Show a => Show (K a) instance Show I -- | Summary: Top-level module for this library. By importing this module, -- the user is able to use all the generic functionality. The user is -- only required to provide an instance of Regular for the -- datatype. -- -- Consider a datatype representing logical expressions: -- --
--   data Logic = Var String
--              | Logic :->:  Logic  -- implication
--              | Logic :<->: Logic  -- equivalence
--              | Logic :&&:  Logic  -- and (conjunction)
--              | Logic :||:  Logic  -- or (disjunction)
--              | Not Logic          -- not
--              | T                  -- true
--              | F                  -- false
--   
-- -- First we import the relevant modules: -- --
--   import Generics.Regular
--   import Generics.Regular.Functions
--   import qualified Generics.Regular.Functions.Show as G
--   import qualified Generics.Regular.Functions.Read as G
--   
-- -- An instance of Regular can be derived automatically with TH -- by invoking: -- --
--   $(deriveAll ''Logic "PFLogic")
--   type instance PF Logic = PFLogic
--   
-- -- We define some logic expressions: -- --
--   l1, l2, l3 :: Logic
--   l1 = Var "p"
--   l2 = Not l1
--   l3 = l1 :->: l2
--   
-- -- And now we can use all of the generic functions. Flattening: -- --
--   ex0 :: [Logic]
--   ex0 = flattenr (from l3)
--   
--   > [Var "p",Not (Var "p")]
--   
-- -- Generic equality: -- --
--   ex1, ex2 :: Bool
--   ex1 = eq l3 l3
--   
--   > True
--   
--   
--   ex2 = eq l3 l2
--   
--   > False
--   
-- -- Generic show: -- --
--   ex3 :: String
--   ex3 = G.show l3
--   
--   > "((:->:) (Var \"p\") (Not (Var \"p\")))"
--   
-- -- Generic read: -- --
--   ex4 :: Logic
--   ex4 = G.read ex3
--   
--   > Var "p" :->: Not (Var "p")
--   
-- -- Value generation: -- --
--   ex5, ex6 :: Logic
--   ex5 = left
--   
--   > Var ""
--   
--   
--   ex6 = right
--   
--   > F
--   
-- -- Folding: -- --
--   ex7 :: Bool
--   ex7 = fold (alg (\_ -> False)) l3 where
--     alg env = (env & impl & (==) & (&&) & (||) & not & True & False)
--     impl p q = not p || q
--   
--   > True
--   
-- -- Unfolding: -- --
--   ex8 :: Logic
--   ex8 = unfold alg 8 where
--     alg :: CoAlgebra Logic Int
--     alg n | odd n || n <= 0 = Left ""
--           | even n          = Right (Left (n-1,n-2))
--   
--   > Var "" :->: (Var "" :->: (Var "" :->: (Var "" :->: Var "")))
--   
-- -- Constructor names: -- --
--   ex9 = conNames (undefined :: Logic)
--   
--   > ["Var",":->:",":<->:",":&&:",":||:","Not","T","F"]
--   
-- -- Deep seq: -- --
--   ex10 = gdseq (Not (T :->: (error "deep seq works"))) ()
--   
--   > *** Exception: deep seq works
--   
module Generics.Regular