module PointsChecker ( checkPoints ) where
import Ast
import Invalid
import Control.Monad ( forM_ )
try :: Bool -> Invalid -> Either Invalid ()
try True = \_ -> Right ()
try False = Left
infix 4 ~=
(~=) :: Double -> Double -> Bool
x ~= y = abs (x y) <= 0.01
checkPointsSubJs :: Judgement -> Either Invalid Judgement
checkPointsSubJs (Judgement (h @ (Header (t, _, maxP)), prop, cs, subJs)) = do
newSubJs <- mapM checkPoints subJs
let newP = sum $ map points newSubJs
pure $ Judgement (Header (t, newP, maxP), prop, cs, newSubJs)
checkPointsSubJs j = pure j
checkPoints :: Judgement -> Either Invalid Judgement
checkPoints j @ (Judgement (h @ (Header (_, p, maxP)), _, _, [])) | isInfinite p = do
Left $ NoPointsInBottomJudgement j
checkPoints j @ (Judgement (h @ (Header (_, p, maxP)), _, _, subJs @ (_:_))) | isInfinite p = do
try ((sum $ map maxPoints subJs) ~= maxP)
(BadSubJudgementMaxPointsSum j)
checkPointsSubJs j
checkPoints j @ (Judgement (h @ (Header (_, p, maxP)), _, _, subJs)) = do
try (p <= maxP)
(PointsExceedMaxPoints h)
case subJs of
[] -> pure j
_ -> do
try ((sum $ map points subJs) ~= p)
(BadSubJudgementPointsSum j)
try ((sum $ map maxPoints subJs) ~= maxP)
(BadSubJudgementMaxPointsSum j)
checkPointsSubJs j
checkPoints j = pure j
points :: Judgement -> Double
points (Bonus (v, _)) = v
points (Judgement (Header (_, v, _), _, _, _)) = v
maxPoints :: Judgement -> Double
maxPoints (Bonus _) = 0.0
maxPoints (Judgement (Header (_, _, v), _, _, _)) = v