-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Find, replace, and split string patterns with Megaparsec parsers (instead of regex) -- -- Find text patterns, replace the patterns, split on the patterns. Use -- Megaparsec monadic parsers instead of regular expressions for pattern -- matching. @package replace-megaparsec @version 1.4.2.0 -- | This internal module is for ByteString specializations. -- -- The functions in this module are intended to be chosen automatically -- by rewrite rules in the Replace.Megaparsec module, so you -- should never need to import this module. -- -- Names in this module may change without a major version increment. module Replace.Megaparsec.Internal.ByteString sepCapByteString :: forall e s m a. (MonadParsec e s m, s ~ ByteString) => m a -> m [Either (Tokens s) a] anyTillByteString :: forall e s m a. (MonadParsec e s m, s ~ ByteString) => m a -> m (Tokens s, a) -- | This internal module is for Text specializations. -- -- The functions in this module are intended to be chosen automatically -- by rewrite rules in the Replace.Megaparsec module, so you -- should never need to import this module. -- -- Names in this module may change without a major version increment. module Replace.Megaparsec.Internal.Text sepCapText :: forall e s m a. (MonadParsec e s m, s ~ Text) => m a -> m [Either (Tokens s) a] anyTillText :: forall e s m a. (MonadParsec e s m, s ~ Text) => m a -> m (Tokens s, a) -- | Replace.Megaparsec is for finding text patterns, and also -- replacing or splitting on the found patterns. This activity is -- traditionally done with regular expressions, but -- Replace.Megaparsec uses Text.Megaparsec parsers instead -- for the pattern matching. -- -- Replace.Megaparsec can be used in the same sort of “pattern -- capture” or “find all” situations in which one would use Python -- re.findall, or Perl m//, or Unix grep. -- -- Replace.Megaparsec can be used in the same sort of “stream -- editing” or “search-and-replace” situations in which one would use -- Python re.sub, or Perl s///, or Unix sed, or -- awk. -- -- Replace.Megaparsec can be used in the same sort of “string -- splitting” situations in which one would use Python re.split or -- Perl split. -- -- See the replace-megaparsec package README for usage examples. -- --

Special accelerated inputs

-- -- There are specialization re-write rules to speed up all functions in -- this module when the input stream type s is Data.Text -- or Data.ByteString. -- --

Type constraints

-- -- All functions in the Running Parser section require the type of -- the stream of text that is input to be Stream s such -- that Tokens s ~ s, because we want to output the same -- type of stream that was input. That requirement is satisfied for all -- the Stream instances included with Text.Megaparsec: -- -- -- -- Megaparsec parsers have an error type parameter e. When -- writing parsers to be used by this module, the error type parameter -- e should usually be Void, because every function in -- this module expects a parser failure to occur on every token in a -- non-matching section of the input stream, so parser failure error -- descriptions are not returned. module Replace.Megaparsec -- |

Break on and capture one pattern

-- -- Find the first occurence of a pattern in a text stream, capture the -- found pattern, and break the input text stream on the found pattern. -- -- The breakCap function is like takeWhile, but can be -- predicated beyond more than just the next one token. It's also like -- breakOn, but the needle can be a pattern instead of a -- constant string. -- -- Be careful not to look too far ahead; if the sep parser looks -- to the end of the input then breakCap could be O(n²). -- -- The pattern parser sep may match a zero-width pattern (a -- pattern which consumes no parser input on success). -- --

Output

-- -- -- --

Access the matched section of text

-- -- If you want to capture the matched string, then combine the pattern -- parser sep with match. -- -- With the matched string, we can reconstruct the input string. For all -- input, sep, if -- --
--   let (Just (prefix, (infix, _), suffix)) = breakCap (match sep) input
--   
-- -- then -- --
--   input == prefix <> infix <> suffix
--   
breakCap :: forall e s a. (Ord e, Stream s, Tokens s ~ s) => Parsec e s a -> s -> Maybe (s, a, s) -- |

Split on and capture all patterns

-- -- Find all occurences of the pattern sep, split the input -- string, capture all the patterns and the splits. -- -- The input string will be split on every leftmost non-overlapping -- occurence of the pattern sep. The output list will contain -- the parsed result of input string sections which match the -- sep pattern in Right, and non-matching sections in -- Left. -- -- splitCap depends on sepCap, see sepCap for more -- details. -- --

Access the matched section of text

-- -- If you want to capture the matched strings, then combine the pattern -- parser sep with match. -- -- With the matched strings, we can reconstruct the input string. For all -- input, sep, if -- --
--   let output = splitCap (match sep) input
--   
-- -- then -- --
--   input == mconcat (second fst <$> output)
--   
splitCap :: forall e s a. (Ord e, Stream s, Tokens s ~ s) => Parsec e s a -> s -> [Either s a] -- |

Stream editor

-- -- Also known as “find-and-replace”, or “match-and-substitute”. Finds all -- non-overlapping sections of the stream which match the pattern -- sep, and replaces them with the result of the editor -- function. -- --

Access the matched section of text in the editor

-- -- If you want access to the matched string in the editor -- function, then combine the pattern parser sep with -- match. This will effectively change the type of the -- editor function to (s,a) -> s. -- -- This allows us to write an editor function which can choose -- to not edit the match and just leave it as it is. If the -- editor function returns the first item in the tuple, then -- streamEdit will not change the matched string. -- -- So, for all sep: -- --
--   streamEdit (match sep) fstid
--   
streamEdit :: forall e s a. (Ord e, Stream s, Monoid s, Tokens s ~ s) => Parsec e s a -> (a -> s) -> s -> s -- |

Stream editor transformer

-- -- Monad transformer version of streamEdit. -- -- Both the parser sep and the editor function run in -- the underlying monad context. -- -- If you want to do IO operations in the editor function -- or the parser sep, then run this in IO. -- -- If you want the editor function or the parser sep to -- remember some state, then run this in a stateful monad. streamEditT :: forall e s m a. (Ord e, Stream s, Monad m, Monoid s, Tokens s ~ s) => ParsecT e s m a -> (a -> m s) -> s -> m s -- |

Specialized manyTill_

-- -- Parser combinator to consume input until the sep pattern -- matches, equivalent to manyTill_ anySingle sep. -- On success, returns the prefix before the pattern match and the parsed -- match. -- -- sep may be a zero-width parser, it may succeed without -- consuming any input. -- -- This combinator will produce a parser which acts like -- takeWhileP but is predicated beyond more than just the next one -- token. anyTill is also like takeWhileP in that it will -- be “fast” when applied to an input stream type s for which -- there are specialization re-write rules. anyTill :: forall e s m a. MonadParsec e s m => m a -> m (Tokens s, a) -- |

Separate and capture

-- -- Parser combinator to find all of the leftmost non-overlapping -- occurrences of the pattern parser sep in a text stream. The -- sepCap parser will always consume its entire input and can -- never fail. -- -- sepCap is similar to the sep* family of parser -- combinators found in parser-combinators and parsers, but -- it returns the parsed result of the sep parser instead of -- throwing it away. -- --

Output

-- -- The input stream is separated and output into a list of sections: -- -- -- -- The output list also has these properties: -- -- -- --

Zero-width matches forbidden

-- -- If the pattern matching parser sep would succeed without -- consuming any input then sepCap will force it to fail. If we -- allow sep to match a zero-width pattern, then it can match -- the same zero-width pattern again at the same position on the next -- iteration, which would result in an infinite number of overlapping -- pattern matches. sepCap :: forall e s m a. MonadParsec e s m => m a -> m [Either (Tokens s) a] -- |

Find all occurences

-- -- Parser combinator for finding all occurences of a pattern in a stream. -- -- Will call sepCap with the match combinator and return -- the text which matched the pattern parser sep in the -- Right sections. -- -- Definition: -- --
--   findAll sep = (fmap.fmap) (second fst) $ sepCap (match sep)
--   
findAll :: MonadParsec e s m => m a -> m [Either (Tokens s) (Tokens s)] -- |

Find all occurences, parse and capture pattern matches

-- -- Parser combinator for finding all occurences of a pattern in a stream. -- -- Will call sepCap with the match combinator so that the -- text which matched the pattern parser sep will be returned in -- the Right sections, along with the result of the parse of -- sep. -- -- Definition: -- --
--   findAllCap sep = sepCap (match sep)
--   
findAllCap :: MonadParsec e s m => m a -> m [Either (Tokens s) (Tokens s, a)]