module Data.Functor.Representable
(
Representable(..)
, Rep(..)
, fmapRep
, distributeRep
, mapWithKeyRep
, apRep
, pureRep
, liftR2
, liftR3
, bindRep
, bindWithKeyRep
, zipWithRep
, zipWithKeyRep
, askRep
, localRep
, duplicatedRep
, extendedRep
, duplicateRep
, extendRep
, extractRep
) where
import Control.Applicative
import Control.Comonad
import Control.Comonad.Trans.Class
import Control.Comonad.Trans.Traced
import Control.Comonad.Cofree
import Control.Monad.Trans.Identity
import Control.Monad.Reader
import Data.Distributive
import Data.Key
import Data.Functor.Bind
import Data.Functor.Identity
import Data.Functor.Compose
import Data.Functor.Extend
import Data.Functor.Product
import qualified Data.Sequence as Seq
import Data.Semigroup hiding (Product)
import Prelude hiding (lookup)
class (Functor f, Indexable f) => Representable f where
tabulate :: (Key f -> a) -> f a
fmapRep :: Representable f => (a -> b) -> f a -> f b
fmapRep f = tabulate . fmap f . index
mapWithKeyRep :: Representable f => (Key f -> a -> b) -> f a -> f b
mapWithKeyRep f = tabulate . (<*>) f . index
pureRep :: Representable f => a -> f a
pureRep = tabulate . const
bindRep :: Representable f => f a -> (a -> f b) -> f b
bindRep m f = tabulate (\a -> index (f (index m a)) a)
bindWithKeyRep :: Representable f => f a -> (Key f -> a -> f b) -> f b
bindWithKeyRep m f = tabulate (\a -> index (f a (index m a)) a)
askRep :: Representable f => f (Key f)
askRep = tabulate id
localRep :: Representable f => (Key f -> Key f) -> f a -> f a
localRep f m = tabulate (index m . f)
apRep :: Representable f => f (a -> b) -> f a -> f b
apRep f g = tabulate (index f <*> index g)
zipWithRep :: Representable f => (a -> b -> c) -> f a -> f b -> f c
zipWithRep f g h = tabulate $ \k -> f (index g k) (index h k)
zipWithKeyRep :: Representable f => (Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKeyRep f g h = tabulate $ \k -> f k (index g k) (index h k)
distributeRep :: (Representable f, Functor w) => w (f a) -> f (w a)
distributeRep wf = tabulate (\k -> fmap (`index` k) wf)
duplicatedRep :: (Representable f, Semigroup (Key f)) => f a -> f (f a)
duplicatedRep w = tabulate (\m -> tabulate (index w . (<>) m))
extendedRep :: (Representable f, Semigroup (Key f)) => (f a -> b) -> f a -> f b
extendedRep f w = tabulate (\m -> f (tabulate (index w . (<>) m)))
duplicateRep :: (Representable f, Monoid (Key f)) => f a -> f (f a)
duplicateRep w = tabulate (\m -> tabulate (index w . mappend m))
extendRep :: (Representable f, Monoid (Key f)) => (f a -> b) -> f a -> f b
extendRep f w = tabulate (\m -> f (tabulate (index w . mappend m)))
extractRep :: (Indexable f, Monoid (Key f)) => f a -> a
extractRep fa = index fa mempty
instance Representable Identity where
tabulate f = Identity (f ())
instance Representable m => Representable (IdentityT m) where
tabulate = IdentityT . tabulate
instance Representable ((->) e) where
tabulate = id
instance Representable m => Representable (ReaderT e m) where
tabulate = ReaderT . fmap tabulate . curry
instance (Representable f, Representable g) => Representable (Compose f g) where
tabulate = Compose . tabulate . fmap tabulate . curry
instance Representable w => Representable (TracedT s w) where
tabulate = TracedT . unrep . collect (Rep . tabulate) . curry
instance (Representable f, Representable g) => Representable (Product f g) where
tabulate f = Pair (tabulate (f . Left)) (tabulate (f . Right))
instance Representable f => Representable (Cofree f) where
tabulate f = f Seq.empty :< tabulate (\k -> tabulate (f . (k Seq.<|)))
newtype Rep f a = Rep { unrep :: f a }
type instance Key (Rep f) = Key f
instance Representable f => Representable (Rep f) where
tabulate = Rep . tabulate
instance Indexable f => Indexable (Rep f) where
index (Rep f) i = index f i
instance Representable f => Keyed (Rep f) where
mapWithKey = mapWithKeyRep
instance Indexable f => Lookup (Rep f) where
lookup = lookupDefault
instance Representable f => Functor (Rep f) where
fmap = fmapRep
instance Representable f => Apply (Rep f) where
(<.>) = apRep
instance Representable f => Applicative (Rep f) where
pure = pureRep
(<*>) = apRep
instance Representable f => Distributive (Rep f) where
distribute = distributeRep
instance Representable f => Bind (Rep f) where
(>>-) = bindRep
instance Representable f => Monad (Rep f) where
return = pureRep
(>>=) = bindRep
#if __GLASGOW_HASKELL__ >= 704
instance (Representable f, Key f ~ a) => MonadReader a (Rep f) where
ask = askRep
local = localRep
#endif
instance Representable f => Zip (Rep f) where
zipWith = zipWithRep
instance Representable f => ZipWithKey (Rep f) where
zipWithKey = zipWithKeyRep
instance (Representable f, Semigroup (Key f)) => Extend (Rep f) where
extended = extendedRep
instance (Representable f, Monoid (Key f)) => Comonad (Rep f) where
extend = extendRep
extract = extractRep
instance ComonadTrans Rep where
lower (Rep f) = f
liftR2 :: Representable f => (a -> b -> c) -> f a -> f b -> f c
liftR2 f fa fb = tabulate $ \i -> f (index fa i) (index fb i)
liftR3 :: Representable f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
liftR3 f fa fb fc = tabulate $ \i -> f (index fa i) (index fb i) (index fc i)