{-# Language AllowAmbiguousTypes #-} {-# LANGUAGE Safe #-} module Data.Semigroup.Property where {- ( -- * Required properties of semigroups associative_addition_on , associative_multiplication_on -- * Required properties of monoids , neutral_addition_on , neutral_multiplication_on -- * Required properties of semigroup & monoid morphisms , morphism_additive_on , morphism_multiplicative_on , morphism_additive_on' , morphism_multiplicative_on' -- * Properties of commuative semigroups , commutative_addition_on , commutative_multiplication_on -- * Properties of idempotent semigroups , idempotent_addition_on , idempotent_multiplication_on -- * Properties of cancellative semigroups , cancellative_addition_on , cancellative_multiplication_on ) where -} import safe Test.Logic (Rel) import safe Data.Semigroup.Additive import safe Data.Semigroup.Multiplicative import safe qualified Test.Function as Prop import safe qualified Test.Operation as Prop hiding (distributive_on) import safe Prelude hiding (Num(..), sum) {- ------------------------------------------------------------------------------------ -- Required properties of semigroups -- | \( \forall a, b, c \in R: (a + b) + c \sim a + (b + c) \) -- -- All semigroups must right-associate addition. -- -- This is a required property. -- associative_addition_on :: (Additive-Semigroup) r => Rel r b -> r -> r -> r -> b associative_addition_on (~~) = Prop.associative_on (~~) add -- | \( \forall a, b, c \in R: (a * b) * c \sim a * (b * c) \) -- -- All semigroups must right-associate multiplication. -- -- This is a required property. -- associative_multiplication_on :: (Multiplicative-Semigroup) r => Rel r b -> r -> r -> r -> b associative_multiplication_on (~~) = Prop.associative_on (~~) mul ------------------------------------------------------------------------------------ -- Required properties of monoids -- | \( \forall a \in R: (z + a) \sim a \) -- -- A semigroup with a right-neutral additive identity must satisfy: -- -- @ -- 'neutral_addition' 'zero' ~~ const True -- @ -- -- Or, equivalently: -- -- @ -- 'zero' '+' r ~~ r -- @ -- -- This is a required property for additive monoids. -- neutral_addition_on :: (Additive-Monoid) r => Rel r b -> r -> b neutral_addition_on (~~) = Prop.neutral_on (~~) add zero -- | \( \forall a \in R: (o * a) \sim a \) -- -- A semigroup with a right-neutral multiplicative identity must satisfy: -- -- @ -- 'neutral_multiplication' 'one' ~~ const True -- @ -- -- Or, equivalently: -- -- @ -- 'one' '*' r ~~ r -- @ -- -- This is a required propert for multiplicative monoids. -- neutral_multiplication_on :: (Multiplicative-Monoid) r => Rel r b -> r -> b neutral_multiplication_on (~~) = Prop.neutral_on (~~) mul one -} ------------------------------------------------------------------------------------ -- Properties of semigroup morphisms {- morphism_additive_on :: (Additive-Semigroup) r => (Additive-Semigroup) s => Rel s b -> (r -> s) -> r -> r -> b morphism_additive_on (~~) f x y = (f $ x `add` y) ~~ (f x `add` f y) morphism_multiplicative_on :: (Multiplicative-Semigroup) r => (Multiplicative-Semigroup) s => Rel s b -> (r -> s) -> r -> r -> b morphism_multiplicative_on (~~) f x y = (f $ x `mul` y) ~~ (f x `mul` f y) morphism_additive_on' :: (Additive-Monoid) r => (Additive-Monoid) s => Rel s b -> (r -> s) -> b morphism_additive_on' (~~) f = (f zero) ~~ zero morphism_multiplicative_on' :: (Multiplicative-Monoid) r => (Multiplicative-Monoid) s => Rel s b -> (r -> s) -> b morphism_multiplicative_on' (~~) f = (f one) ~~ one ------------------------------------------------------------------------------------ -- Properties of commutative semigroups -- | \( \forall a, b \in R: a + b \sim b + a \) -- -- This is a an /optional/ property for semigroups, and a /required/ property for semirings. -- commutative_addition_on :: (Additive-Semigroup) r => Rel r b -> r -> r -> b commutative_addition_on (~~) = Prop.commutative_on (~~) add -- | \( \forall a, b \in R: a * b \sim b * a \) -- -- This is a an /optional/ property for semigroups, and a /optional/ property for semirings. -- It is a /required/ property for rings. -- commutative_multiplication_on :: (Multiplicative-Semigroup) r => Rel r b -> r -> r -> b commutative_multiplication_on (~~) = Prop.commutative_on (~~) mul -} ------------------------------------------------------------------------------------ -- Properties of idempotent dioids and predioids