qBje      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdportableunstableclaudiusmaximus@goto10.orgStrict  type. portableunstableclaudiusmaximus@goto10.org  Complex number type without the e constraint. Extract the real part. Extract the imaginary part. Complex conjugate. Complex magnitude squared. Complex magnitude. Complex phase. 3Complex number with the given magnitude and phase. 5Complex number with magnitude 1 and the given phase. Convert to polar form.     portableunstableclaudiusmaximus@goto10.org Iteration output. Iteration state. Iteration mode.  !"Iteration initial state. #Iteration engine. $Iterate over a list.   !"#$#!  "#$ !  !"#$portableunstableclaudiusmaximus@goto10.org%?Given the period and approximate location, successively refine  this estimate to a nucleus. 'The algorithm is based on Robert Munafo's page  Newton-Raphson method   3http://mrob.com/pub/muency/newtonraphsonmethod.html. period  estimate &@Given the period and nucleus, find succesive refinements to the ) bond point at a given internal angle. %The algorithm is based on ideas from   *http://mrob.com/pub/muency/derivative.html. period  nucleus angle 'IGiven the period and nucleus, find an interior point at a given internal  angle and radius in (0,1]. period  nucleus radius angle (>Find the period of the lowest period nucleus inside a square. 'The algorithm is based on Robert Munafo's page,  Finding the Period of a mu-Atom   &http://mrob.com/pub/muency/period.html. maximum period radius center fg%&'((%&'%&'(portableunstableclaudiusmaximus@goto10.org )Image bounds and coordinates. *Channels in an image. + in [-pi,pi] ,normalized to pixel spacing -continuous dwell .Render an image with the !$ algorithm. The iteration count is J doubled until the image is good enough, or the fixed maximum iteration  count is reached. W putStr . unicode $ simpleImage (coordinates 100 100 ((-1.861):+0) (0.001)) 1000000000  coordinates max iterations image /Render an image with the $ algorithm. The iteration count is J doubled until the image is good enough, or the fixed maximum iteration 9 count is reached. The output values are converted to h. a putStr . unicode . border $ complexImage (coordinates 100 100 ((-1.861):+0) (0.001)) 1000000000  coordinates max iterations image 0Image rendering loop.  escapees output array max iterations  iterations prior escapees iterations this phase  iterates output callback output array as given 1;The parameter plane coordinates for an image, with bounds. width height center size 2@Convert a distance estimate image to a near-boundary bit array. / The input image must have a DistanceEstimate' channel. image 3'Convert a bit array to ascii graphics. image ascii 4/Convert a bit array to unicode block graphics. image  unicode iStrict version of  modifySTRef. )*+,-./01234 ./0134*-,+)2 )*-,++,-./01234portableunstableclaudiusmaximus@goto10.orgPjklm5AAngled internal addresses have angles between each integer in an  internal address. 678CInternal addresses are a non-empty sequence of strictly increasing  integers beginning with '1'. 9:#Kneading sequences. Note that the > case has an infinite list. ;<=>? Elements of kneading sequences. @ABn1Binary representation of a (pre-)periodic angle. C2Angle as a fraction of a turn, usually in [0, 1). D Convert to human readable form. E Convert to human readable form. FWrap an angle into [0, 1). GAngle doubling map. o-Convert an angle from binary representation. p&Convert a list of bits to an integer. q+Convert an angle to binary representation. r>Tuning transformation for binary represented periodic angles. = Probably only valid for angle pairs presenting ray pairs. s"Tuning transformation for angles. H Knead character representation. I$Kneading sequence as a string. The > case is truncated arbitrarily. J-The kneading sequence for an external angle. K&The period of a kneading sequence, or t when it isn' t periodic. uL0Unwrap a kneading sequence to an infinite list. vMInternal address as a string. NConstruct a valid 98, checking the precondition. O"Extract the sequence of integers. P Construct an 98 from a kneading sequence. wxyQ!A star-periodic kneading sequence's upper and lower associated  kneading sequences. R(The upper associated kneading sequence. S(The lower associated kneading sequence. T%Angled internal address as a string. UBuilds a valid 5 from a list, checking the # precondition that only the last ' Maybe Angle' should be t,  and the z must be strictly increasing. {V Convert an 5 to a list. |}W@The angled internal address corresponding to an external angle. X5Split an angled internal address at the last island. YThe inverse of X. Z*The period of an angled internal address. [4Discard angle information from an internal address. \?The pair of external angles whose rays land at the root of the B hyperbolic component described by the angled internal address. ~]Parse an angle. ^Parse a list of angles. _Parse a kneading element. `)Parse a non-aperiodic kneading sequence. aParse an internal address. b=Parse an angled internal address, accepting some unambiguous  abbreviations. .56789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`ab.CGFDE?BA@H:>=<;IJKLQRS89MPNO576TWUV\[XYZ]^_`ab.57667899:>=<;;<=>?BA@@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abportableunstableclaudiusmaximus@goto10.orgc<Compute the external ray for an external angle with a given : accuracy, sharpness and starting radius. For example:  # externalRay 1e-10 8 (2**24) (1/3) )The algorithm is based on Tomoki Kawahira's paper  8An algorithm to draw external rays of the Mandelbrot set   Bhttp://www.math.nagoya-u.ac.jp/~kawahira/programs/mandel-exray.pdf.  accuracy  sharpness radius external angle d@Compute the external ray outwards from a given parameter value.  If the result rs satisfies:   c = last rs  magnitude c > radius $then the external angle is given by t:  a = phase c / (2 * pi)  t = a - fromIntegral (floor a)  iterations  epsilon  accuracy  sharpness radius  parameter cdcdcd      !"#$%&'()*+,-./0123'456789:;<=>>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|j}~ruff-0.2Fractal.RUFF.Types.TupleFractal.RUFF.Types.ComplexFractal.RUFF.Mandelbrot.IterateFractal.RUFF.Mandelbrot.NucleusFractal.RUFF.Mandelbrot.ImageFractal.RUFF.Mandelbrot.AddressFractal.RUFF.Mandelbrot.RayTuple2Complex:+realPartimagPart conjugate magnitude2 magnitudephasemkPolarcispolarOutputOutDistanceEstimatedistanceEstimate OutEscapeTime escapeTime finalAngle OutSimpleoutUserIterateIterDistanceEstimateitdzIterEscapeTimeitn IterSimpleitcitziterUserModeDistanceEstimate EscapeTimeSimpleinitialiterateiterates findNucleusfindBond findInternal findPeriod CoordinatesChannel FinalAngleDistanceEstimate' simpleImage complexImage imageLoop coordinatesborderasciiunicodeAngledInternalAddressAngledUnangledInternalAddressKneadingPeriodic StarPeriodic PrePeriodic AperiodicKneadStarOneZeroAngle prettyAngle prettyAngleswrapdouble kneadCharprettyKneadingkneadingperiodunwrapprettyInternalAddressinternalFromListinternalToListinternalAddress associatedupperlowerprettyAngledInternalAddressangledFromList angledToListangledInternalAddress splitAddress joinAddress addressPeriod stripAnglesexternalAngles parseAngle parseAngles parseKnead parseKneadingparseInternalAddressparseAngledInternalAddress externalRayexternalRayOutbase GHC.Float RealFloatstraddlesOrigin positiveRealghc-prim GHC.TypesFloat modifySTRef'ParseTokenFractionNumberBinAngleunbinarybitsbinarybtunetune Data.MaybeNothingrhoorbit address'inf address'peraddress' integer-gmpGHC.Integer.TypeIntegerunsafeAngledFromList denominators numeratorsexternalAngles'wakeeschunk2genericElemIndexsafeGenericIndex unFractionunNumberparserpTokenspToken pFractionpNumberpSpacepOptionalSpacepKnead pKneading