-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Safe, consistent, and easy exception handling -- -- Please see README.md @package safe-exceptions @version 0.1.7.2 -- | Please see the README.md file in the safe-exceptions repo for -- information on how to use this module. Relevant links: -- --
-- throwM e >> x = throwM e ---- -- In other words, throwing an exception short-circuits the rest of the -- monadic computation. class Monad m => MonadThrow (m :: Type -> Type) -- | A class for monads which allow exceptions to be caught, in particular -- exceptions which were thrown by throwM. -- -- Instances should obey the following law: -- --
-- catch (throwM e) f = f e ---- -- Note that the ability to catch an exception does not guarantee -- that we can deal with all possible exit points from a computation. -- Some monads, such as continuation-based stacks, allow for more than -- just a success/failure strategy, and therefore catch -- cannot be used by those monads to properly implement a function -- such as finally. For more information, see MonadMask. class MonadThrow m => MonadCatch (m :: Type -> Type) -- | A class for monads which provide for the ability to account for all -- possible exit points from a computation, and to mask asynchronous -- exceptions. Continuation-based monads are invalid instances of this -- class. -- -- Instances should ensure that, in the following code: -- --
-- fg = f `finally` g ---- -- The action g is called regardless of what occurs within -- f, including async exceptions. Some monads allow f -- to abort the computation via other effects than throwing an exception. -- For simplicity, we will consider aborting and throwing an exception to -- be two forms of "throwing an error". -- -- If f and g both throw an error, the error thrown by -- fg depends on which errors we're talking about. In a monad -- transformer stack, the deeper layers override the effects of the inner -- layers; for example, ExceptT e1 (Except e2) a represents a -- value of type Either e2 (Either e1 a), so throwing both an -- e1 and an e2 will result in Left e2. If -- f and g both throw an error from the same layer, -- instances should ensure that the error from g wins. -- -- Effects other than throwing an error are also overriden by the deeper -- layers. For example, StateT s Maybe a represents a value of -- type s -> Maybe (a, s), so if an error thrown from -- f causes this function to return Nothing, any -- changes to the state which f also performed will be erased. -- As a result, g will see the state as it was before -- f. Once g completes, f's error will be -- rethrown, so g' state changes will be erased as well. This is -- the normal interaction between effects in a monad transformer stack. -- -- By contrast, lifted-base's version of finally always -- discards all of g's non-IO effects, and g never sees -- any of f's non-IO effects, regardless of the layer ordering -- and regardless of whether f throws an error. This is not the -- result of interacting effects, but a consequence of -- MonadBaseControl's approach. class MonadCatch m => MonadMask (m :: Type -> Type) -- | Runs an action with asynchronous exceptions disabled. The action is -- provided a method for restoring the async. environment to what it was -- at the mask call. See Control.Exception's mask. mask :: MonadMask m => ((forall a. () => m a -> m a) -> m b) -> m b -- | Like mask, but the masked computation is not interruptible (see -- Control.Exception's uninterruptibleMask. WARNING: Only -- use if you need to mask exceptions around an interruptible operation -- AND you can guarantee the interruptible operation will only block for -- a short period of time. Otherwise you render the program/thread -- unresponsive and/or unkillable. uninterruptibleMask :: MonadMask m => ((forall a. () => m a -> m a) -> m b) -> m b -- | A generalized version of bracket which uses ExitCase to -- distinguish the different exit cases, and returns the values of both -- the use and release actions. In practice, this extra -- information is rarely needed, so it is often more convenient to use -- one of the simpler functions which are defined in terms of this one, -- such as bracket, finally, onError, and -- bracketOnError. -- -- This function exists because in order to thread their effects through -- the execution of bracket, monad transformers need values to be -- threaded from use to release and from -- release to the output value. -- -- NOTE This method was added in version 0.9.0 of this library. -- Previously, implementation of functions like bracket and -- finally in this module were based on the mask and -- uninterruptibleMask functions only, disallowing some classes of -- tranformers from having MonadMask instances (notably -- multi-exit-point transformers like ExceptT). If you are a -- library author, you'll now need to provide an implementation for this -- method. The StateT implementation demonstrates most of the -- subtleties: -- --
-- generalBracket acquire release use = StateT $ s0 -> do -- ((b, _s2), (c, s3)) <- generalBracket -- (runStateT acquire s0) -- ((resource, s1) exitCase -> case exitCase of -- ExitCaseSuccess (b, s2) -> runStateT (release resource (ExitCaseSuccess b)) s2 -- -- -- In the two other cases, the base monad overrides use's state -- -- changes and the state reverts to s1. -- ExitCaseException e -> runStateT (release resource (ExitCaseException e)) s1 -- ExitCaseAbort -> runStateT (release resource ExitCaseAbort) s1 -- ) -- ((resource, s1) -> runStateT (use resource) s1) -- return ((b, c), s3) ---- -- The StateT s m implementation of generalBracket -- delegates to the m implementation of generalBracket. -- The acquire, use, and release arguments -- given to StateT's implementation produce actions of type -- StateT s m a, StateT s m b, and StateT s m -- c. In order to run those actions in the base monad, we need to -- call runStateT, from which we obtain actions of type m -- (a, s), m (b, s), and m (c, s). Since each -- action produces the next state, it is important to feed the state -- produced by the previous action to the next action. -- -- In the ExitCaseSuccess case, the state starts at s0, -- flows through acquire to become s1, flows through -- use to become s2, and finally flows through -- release to become s3. In the other two cases, -- release does not receive the value s2, so its action -- cannot see the state changes performed by use. This is fine, -- because in those two cases, an error was thrown in the base monad, so -- as per the usual interaction between effects in a monad transformer -- stack, those state changes get reverted. So we start from s1 -- instead. -- -- Finally, the m implementation of generalBracket -- returns the pairs (b, s) and (c, s). For monad -- transformers other than StateT, this will be some other type -- representing the effects and values performed and returned by the -- use and release actions. The effect part of the -- use result, in this case _s2, usually needs to be -- discarded, since those effects have already been incorporated in the -- release action. -- -- The only effect which is intentionally not incorporated in the -- release action is the effect of throwing an error. In that -- case, the error must be re-thrown. One subtlety which is easy to miss -- is that in the case in which use and release both -- throw an error, the error from release should take priority. -- Here is an implementation for ExceptT which demonstrates how -- to do this. -- --
-- generalBracket acquire release use = ExceptT $ do -- (eb, ec) <- generalBracket -- (runExceptT acquire) -- (eresource exitCase -> case eresource of -- Left e -> return (Left e) -- nothing to release, acquire didn't succeed -- Right resource -> case exitCase of -- ExitCaseSuccess (Right b) -> runExceptT (release resource (ExitCaseSuccess b)) -- ExitCaseException e -> runExceptT (release resource (ExitCaseException e)) -- _ -> runExceptT (release resource ExitCaseAbort)) -- (either (return . Left) (runExceptT . use)) -- return $ do -- -- The order in which we perform those two Either effects determines -- -- which error will win if they are both Lefts. We want the error from -- -- release to win. -- c <- ec -- b <- eb -- return (b, c) --generalBracket :: MonadMask m => m a -> (a -> ExitCase b -> m c) -> (a -> m b) -> m (b, c) -- | Like mask, but does not pass a restore action to the -- argument. mask_ :: MonadMask m => m a -> m a -- | Like uninterruptibleMask, but does not pass a restore -- action to the argument. uninterruptibleMask_ :: MonadMask m => m a -> m a -- | Catch all IOError (eqv. IOException) exceptions. Still -- somewhat too general, but better than using catchAll. See -- catchIf for an easy way of catching specific IOErrors -- based on the predicates in System.IO.Error. catchIOError :: MonadCatch m => m a -> (IOError -> m a) -> m a -- | Flipped catchIOError handleIOError :: MonadCatch m => (IOError -> m a) -> m a -> m a -- | Any type that you wish to throw or catch as an exception must be an -- instance of the Exception class. The simplest case is a new -- exception type directly below the root: -- --
-- data MyException = ThisException | ThatException -- deriving Show -- -- instance Exception MyException ---- -- The default method definitions in the Exception class do what -- we need in this case. You can now throw and catch -- ThisException and ThatException as exceptions: -- --
-- *Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException))
-- Caught ThisException
--
--
-- In more complicated examples, you may wish to define a whole hierarchy
-- of exceptions:
--
-- -- --------------------------------------------------------------------- -- -- Make the root exception type for all the exceptions in a compiler -- -- data SomeCompilerException = forall e . Exception e => SomeCompilerException e -- -- instance Show SomeCompilerException where -- show (SomeCompilerException e) = show e -- -- instance Exception SomeCompilerException -- -- compilerExceptionToException :: Exception e => e -> SomeException -- compilerExceptionToException = toException . SomeCompilerException -- -- compilerExceptionFromException :: Exception e => SomeException -> Maybe e -- compilerExceptionFromException x = do -- SomeCompilerException a <- fromException x -- cast a -- -- --------------------------------------------------------------------- -- -- Make a subhierarchy for exceptions in the frontend of the compiler -- -- data SomeFrontendException = forall e . Exception e => SomeFrontendException e -- -- instance Show SomeFrontendException where -- show (SomeFrontendException e) = show e -- -- instance Exception SomeFrontendException where -- toException = compilerExceptionToException -- fromException = compilerExceptionFromException -- -- frontendExceptionToException :: Exception e => e -> SomeException -- frontendExceptionToException = toException . SomeFrontendException -- -- frontendExceptionFromException :: Exception e => SomeException -> Maybe e -- frontendExceptionFromException x = do -- SomeFrontendException a <- fromException x -- cast a -- -- --------------------------------------------------------------------- -- -- Make an exception type for a particular frontend compiler exception -- -- data MismatchedParentheses = MismatchedParentheses -- deriving Show -- -- instance Exception MismatchedParentheses where -- toException = frontendExceptionToException -- fromException = frontendExceptionFromException ---- -- We can now catch a MismatchedParentheses exception as -- MismatchedParentheses, SomeFrontendException or -- SomeCompilerException, but not other types, e.g. -- IOException: -- --
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException))
-- Caught MismatchedParentheses
-- *Main> throw MismatchedParentheses `catch` \e -> putStrLn ("Caught " ++ show (e :: IOException))
-- *** Exception: MismatchedParentheses
--
class (Typeable e, Show e) => Exception e
toException :: Exception e => e -> SomeException
fromException :: Exception e => SomeException -> Maybe e
-- | Render this exception value in a human-friendly manner.
--
-- Default implementation: show.
displayException :: Exception e => e -> String
-- | The class Typeable allows a concrete representation of a type
-- to be calculated.
class Typeable (a :: k)
-- | The SomeException type is the root of the exception type
-- hierarchy. When an exception of type e is thrown, behind the
-- scenes it is encapsulated in a SomeException.
data SomeException
SomeException :: e -> SomeException
-- | Superclass for asynchronous exceptions.
data SomeAsyncException
SomeAsyncException :: e -> SomeAsyncException
-- | Exceptions that occur in the IO monad. An
-- IOException records a more specific error type, a descriptive
-- string and maybe the handle that was used when the error was flagged.
data IOException
-- | If the first argument evaluates to True, then the result is the
-- second argument. Otherwise an AssertionFailed exception is
-- raised, containing a String with the source file and line
-- number of the call to assert.
--
-- Assertions can normally be turned on or off with a compiler flag (for
-- GHC, assertions are normally on unless optimisation is turned on with
-- -O or the -fignore-asserts option is given). When
-- assertions are turned off, the first argument to assert is
-- ignored, and the second argument is returned as the result.
assert :: Bool -> a -> a
instance GHC.Show.Show Control.Exception.Safe.AsyncExceptionWrapper
instance GHC.Exception.Type.Exception Control.Exception.Safe.AsyncExceptionWrapper
instance GHC.Show.Show Control.Exception.Safe.SyncExceptionWrapper
instance GHC.Exception.Type.Exception Control.Exception.Safe.SyncExceptionWrapper
instance GHC.Show.Show Control.Exception.Safe.StringException
instance GHC.Exception.Type.Exception Control.Exception.Safe.StringException